

Introduction to Functional Medicine

EMT/P, RN, BSN, DC Certified Emergency Nurse, CCRN

- Expertise in in epigenetics, forensics, Methylation, Neuro-Endo-Immunology
- Functional Medicine, Nutrigenomics
- Applied Kinesiology, Live Blood Cell Analysis, Nutritional Counseling

(c) Dr Jess P Armine (unless otherwise noted) 2022

"The Neurotransmitter Whisperer"

"The Sherlock Holmes of Chronic Illness"

Financial & Competing Interests disclosure

I am a self-employed, independent Health Care Practitioner in the United States.

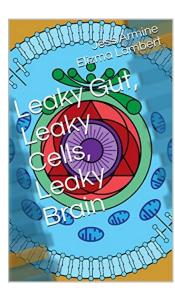
I am not compensated for this webinar.

I have no Financial or Competing Interests with the LDN Research Trust or any other person or entity mentioned herein.

The opinions expressed on my own and do not represent the policies of the LDN Research Trust

Dr Ben Lynch

For the use of Strategene and concepts from his book, "Dirty Genes"


drbenlynch.com seekinghealth.com

(c) Dr Jess P Armine (unless otherwise noted) 2022

Elizma Lambert, ND (elizmalambert.com)

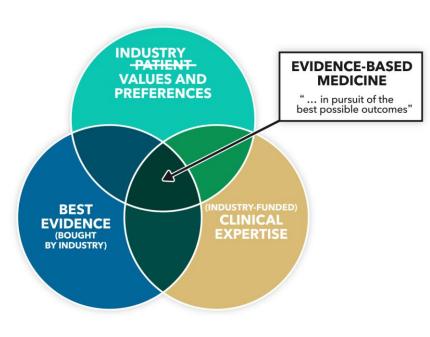
For use of the concepts in her book coauthored with myself "Leaky Gut, Leaky Cells, Leaky Brain"

Gilian Crowther, NT/ND, Fellow of BANT, mNNA, CNHC reg.

aonm.org

For the use of her CDR Slides

Today's Webinar is Unique


What you can expect today...

For Everyone

- Define what a Functional Medicine Practitioner is and does.
- Discuss the difference between classical and functional medicine.
- Show you how you benefit from true integrative approach
- Put it all together with Case Studies.
- Tips on how to pick a practitioner

For the professionals

- The purpose of today's lecture is to be cohesive not divisive.
- For far too long our professions have been in divergence to the detriment of those who suffer.
- Please do not take anything that I say amiss as I am not being adversarial but will point out simple truths.
- We need to work together for the highest good of those we serve.

7

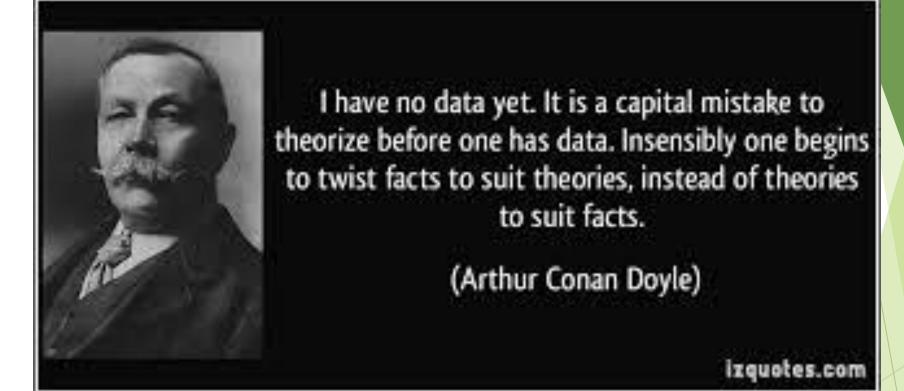
Classical (Traditional) vs Functional Medicine*

*Please Note: I will use the term Functional Medicine Practitioner (FMP) to represent any healthcare professional that practices within the parameters that I am about to share with you. These practitioners have varied backgrounds and degrees

Functional Medicine, the view of Classical Medicine

- Functional medicine is a form of <u>alternative medicine</u> that encompasses a number of unproven and disproven methods and treatments.
- Its proponents claim that it focuses on the "root causes" of diseases based on interactions between the environment and the gastrointestinal, endocrine, and immune systems to develop "individualized treatment plans."

 It has been described as pseudoscience, <u>quackery</u>, and at its essence a rebranding of <u>complementary and alternative</u> <u>medicine</u>.


This begs the question...why would

The assessment of root causes.

The proven relationship between environment, endocrine, and the immune system (ex: psychoneuroendocrinology, Neuroendoimmunology, Gut-Brain Axis, etc.)

The development of individualized treatment plans

Be considered quackery?

WORDS TO LIVE BY

Classical (Traditional) Medicine

- Takes sets of symptoms and labels them as diseases for the purpose of identifying a matching pharmaceutical protocol.
- Essentially, treating the result of an illness, not the illness.
- ► How did it get this way?

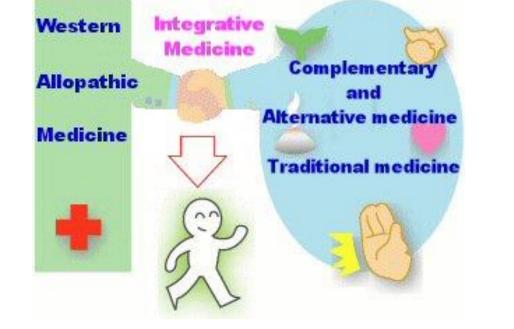
1960's and before

- ► The GP (General Practitioner) was king.
- The GP was the practitioner that knew you, your family, and was your advocate.
- Any specialists would report directly to your GP and he/she would take it from there,

1970's and beyond

- Transition to specialists and the GP was snubbed by the medical community.
- Medical training was done by referring to algorithms with suggested treatment protocols (Little and Brown "spirals").
- Medicine became corporatized.
 - "Suggested Protocols" become standards of care.
 - Diagnoses must be "proven" by tests or treatment not supported.
 - Physicians are given less and less time to be with their patients.
 - Doctors have barely enough time to address the chief complaint and become "hemmed in" to their specialties.

<u>Doctors can't be physicians any longer resulting in treatment according to the Acute Care</u> model. Those with chronic conditions suffer the most.


Classical vs Functional Thought Patterns

Acute Care Model

- Premise: Eradicate the root cause and the body will heal itself
- Results in chronic conditions:
 - Confusion as to why someone will not heal
 - Blaming the patient (histrionic, sx magnification, malingering)
 - Conclusion that certain pathologies cannot be healed.

The FMP Model

- Premise: There are root causes and downstream effects (Symptoms created by the root causes)
- Both must be identified and treated
- In chronic conditions, the homeostatic(healing) mechanisms won't "re-boot" w/o intervention.
- Both foundational treatment and targeted root cause treatment are administered.
- In addition, the FMP will delve into the effect of the person's belief systems and coach them into a healthy mindset

Neither Allopathic nor Functional Medicine have all the answers!

Healthcare needs <u>TRUE</u> Integrative Medicine... A blending of allopathic and Functional.

Collaborating is the best way. What holds us back? The way we think about things.

Basing	Ignoring	Ignoring	Forgetting
Basing our treatment parameters solely on "scientific proof" as demonstrated by placebo- controlled, double-blind studies	Ignoring observational or anecdotal evidence that may lack enough "scientific" studies	Ignoring intuitive insight	Forgetting the wisdom of Albert Einstein: • The intuitive mind is a sacred gift and the rational mind is a faithful servant. We have created a society that honors the servant and has forgotten the gift.

Today, Let Agree to Think Differently

► Today let's:

- ▶ To not depend on a single source of data
- Consider data that was heretofore considered unusable because it was "unproven", "alternative", "woo woo", or simply <u>unfamiliar</u> to us

► How will we do this?

- Accept a combination of scientific and clinical data utilizing intuitive insight
- ▶ Never, ever say (or think), "That can't happen".
- Open our minds to what works but saying/thinking, "I wonder how that happened"?

Why has Functional Medicine Flourished?

When a desperate mother has a suffering child that no one can diagnose or treat successfully.

It is the FMP that takes up the gauntlet.

► We will think outside the box.

In other words, "Who you gonna call?"

https://www.imdb.com/title/tt0087332/atch!

FMP shines with Chronic Illnesses

Autoimmune disorders, Fibromyalgia, MS, Parkinson's, Bipolar Disorder, ADD, ADHD, OCD, Depression, Dementia, Alzheimer's, Dysautonomia, Multiple Chemical Sensitivities, etc.

What they are

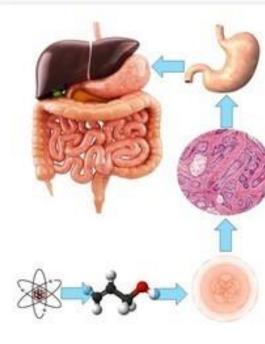
- Chronic illness have root causes that have resulted in expressions specific to the diagnosis.
- Chronic illnesses are pathophysiologic processes. As such, they can be resolved.
- Chronic illnesses often Require a multidisciplinary approach but most of all:
 - Chronic illnesses require a different point of view on the part of the practitioner.

What they are not

- You are not born with a chronic illness
- Chronic illnesses are not the fault of the patient
- Chronic illnesses are not chance occurrences or "rolls of the cosmic dice".
- Autoimmune disorders are NOT unrecoverable as they have precipitating factors that initiate the pathologic processes

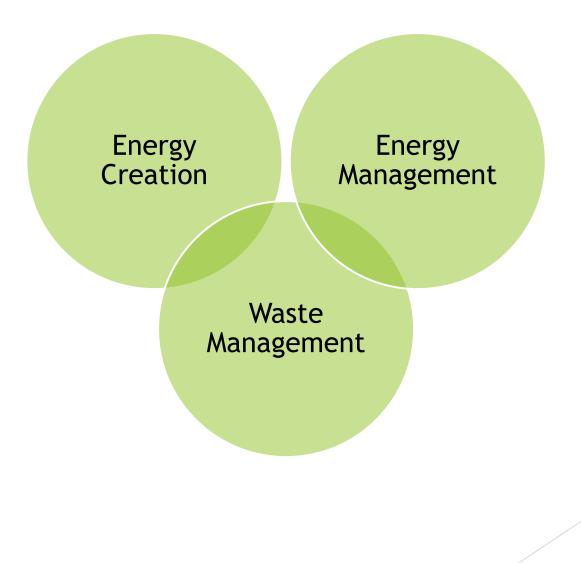
Functional Practitioners Thought Pattern

What does it mean to think "Outside the Box"?


Basic Premise:

All of life happens within the cell and is protected and supported by the cell membrane

Heal the cells and you heal the body!


Levels of Organization

- Structural Levels of Organization
- Atoms
- Molecules
- Cells
- Tissues
- Organs
- Organ systems
- Organisms

& Life Functions

Basis of Cellular Function...

Bio-Individualized Medicine™

R. JESS F. ARMINA E BI TROPY IDIT - - PTTT

Bio-Individualized Medicine[™] is a *Thought Paradigm* that includes consideration of ALL the following parameters

Ever Notice that Many Diseases Have Common Symptoms... Perhaps There is Common Causation?

Symptom	Chronic Lyme	Fibromyalgia	ME/CFS	Dysautonomia
Fatigue	Х	Х	Х	X
Chronic Pain	Х	Х	Х	x
Mood Changes	х	Х	х	x
Confusion/ Brain Fog	х	Х	х	X
Numbness Tingling	x	X	х	x
Sensitivity to light	х	Х	х	X
Inflammation	Х	Х	Х	x

MITOCHONDRIAL DYSFUNCTION

The Cell Danger Response (CDR)

Naviaux, R.K., Metabolic features of the cell danger response, Mitochondrion (2013), http://dx.doi.org/10.1016/ j.mito.2013.08.006

What is the Cell Danger Response?

Mitochondrion 16 (2014) 7-17

Contents lists available at ScienceDirect

Mitochondrion

journal homepage: www.elsevier.com/locate/mito

Metabolic features of the cell danger response

Robert K. Naviaux *

The Mitochondrial and Metabolic Disease Center, Departments of Medicine, Pediatrics, and Pathology, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C102, San Diego, CA 92103-8467, USA Veterans Affairs Center for Excellence in Stress and Mental Health (CESAMH), La Jolla, CA, USA

ARTICLE INFO

ABSTRACT

Available online 24 August 2013

Keywords: Oxidative stress Oxidative shielding Innate immunity Inflammation Purinergic signaling Mitochondria

The cell danger response (CDR) is the evolutionarily conserved metabolic response that protects cells and hosts from harm. It is triggered by encounters with chemical, physical, or biological threats that exceed the cellular capacity for homeostasis. The resulting metabolic mismatch between available resources and functional capacity produces a cascade of changes in cellular electron flow, oxygen consumption, redox, membrane fluidity, lipid dynamics, bioenergetics, carbon and sulfur resource allocation, protein folding and aggregation, vitamin availability, metal homeostasis, indole, pterin, 1-carbon and polyamine metabolism, and polymer formation. The first wave of danger signals consists of the release of metabolic intermediates like ATP and ADP, Krebs cycle intermediates, oxygen, and reactive oxygen species (ROS), and is sustained by purinergic signaling. After the danger has been eliminated or neutralized, a choreographed sequence of anti-inflammatory and regenerative pathways is activated to reverse the CDR and to heal. When the CDR persists abnormally, whole body metabolism and the gut microbiome are disturbed, the collective performance of multiple organ systems is impaired, behavior is changed, and chronic disease results. Metabolic memory of past stress encounters is stored in the form of altered mitochondrial and cellular macromolecule content, resulting in an increase in functional reserve capacity through a process known as mitocellular hormesis. The systemic form of the CDR, and its magnified form, the purinergic life-threat response (PLTR), are under direct control by ancient pathways in the brain that are ultimately coordinated by centers in the brainstem. Chemosensory integration of whole body metabolism occurs in the brainstem and is a prerequisite for normal brain, motor, vestibular, sensory, social, and speech development. An under-

Mitochondrion

"An evolutionarily conserved response activated when a cell encounters a threat that could injure or kill it"

Metabolic features of the cell danger response

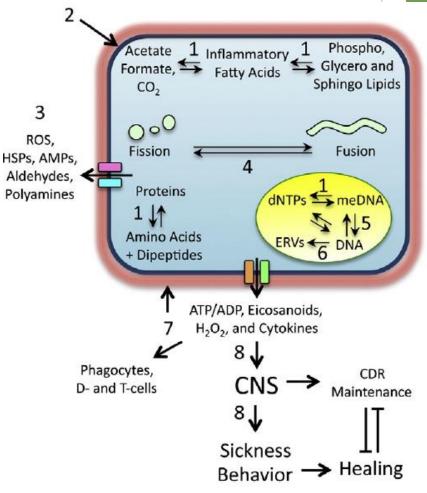
Robert K. Naviaux *

The Mitochondrial and Metabolic Disease Center, Departments of Medicine, Pediatrics, and Pathology, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C102, San Diego, CA 92103-8467, USA Veterans Affairs Center for Excellence in Stress and Mental Health (CESAMH), La Jolla, CA, USA

ARTICLE INFO

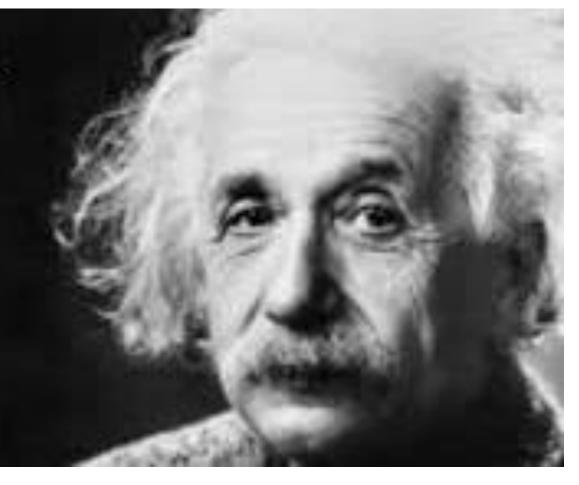
ABSTRACT

Available online 24 August 2013


Keywords: Oxidative stress The cell danger response (CDR) is the evolutionarily conserved metabolic response that protects cells and hosts from harm. It is triggered by encounters with chemical, physical, or biological threats that exceed the cellular capacity for homeostasis. The resulting metabolic mismatch between available resources and functional capacity produces a cascade of changes in cellular electron flow, oxygen consumption, redox, membrane fluidity, lipid dy-

... Our mitochondria downregulate as a protective mechanism

Source: Naviaux RK. Metabolic features of the Cell Danger Response. Mitochondrion. 2014 May; 16:7-17


What are the immediate results of acute CDR?

- Mitochondria decrease oxygen consumption to oxidise the cellular environment, inhibiting assembly of monomeric building blocks into polymers, thus decreasing efficiency of RNA, protein, and DNA synthesis by the infecting pathogen
- 2) Stiffen cell membranes to limit pathogen egress
- 3) Release of antiviral and antimicrobial chemicals (HOCL)
- 4) Increase in autophagy/mitochondrial fission/mitophagy
- 5) Changes in DNA methylation: SAM is directed to polyamine synthesis to assist ROS and antiviral/antimicrobial polyamine aldehyde synthesis and release, lowering the SAM/SAH ratio

Source: Naviaux RK. Metabolic features of the Cell Danger Response. Mitochondrion. 2014 May; 16:7-17

"If you can't explain it simply, you don't understand it well enough." - Albert Einstein

The Cell Danger Response ? Put Simply:

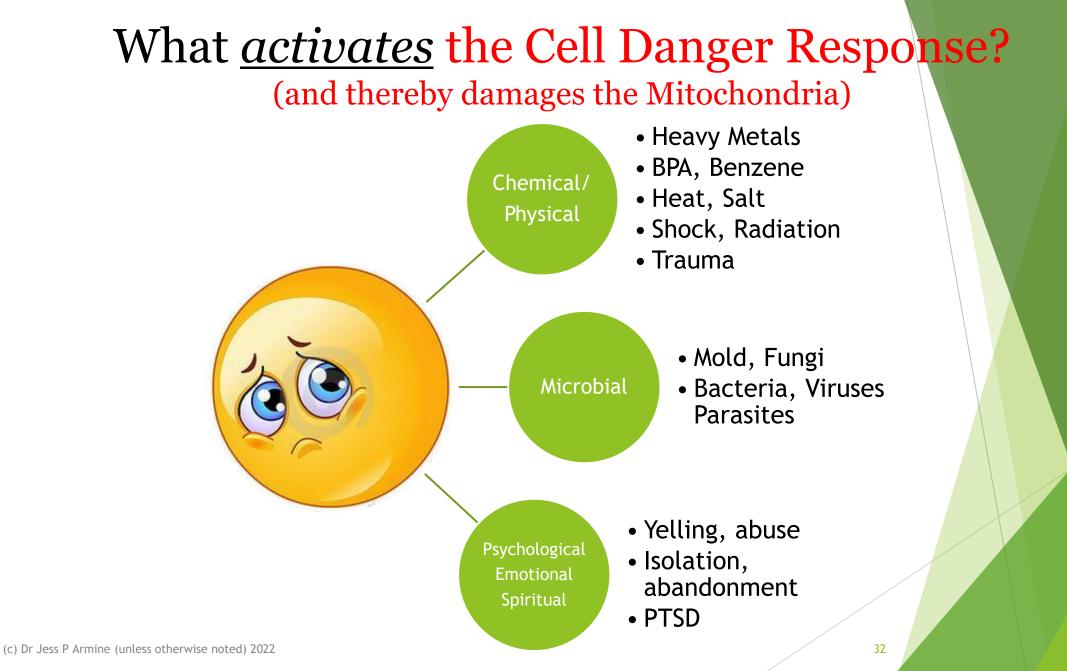
- Metabolic response of the cell to protect itself (and thereby you) from harm
- The basis of re-establishing homeostasis (normal function)
- It all occurs in the Mitochondria

THE MEDICAL COMMUNITY'S BEST KEPT SECRET - NOW REVEALED!

YES! IT MAY BE ALL IN YOUR HEAD!

BUT,

IT COULD BE AFFECTING OTHER ORGANS TOO!


GOT MITO?

YOU ARE NOT ALONE!

DON'T KNOW A THING ABOUT MITO?

> YOU TOO ARE NOT ALONE!

COMING SOON!

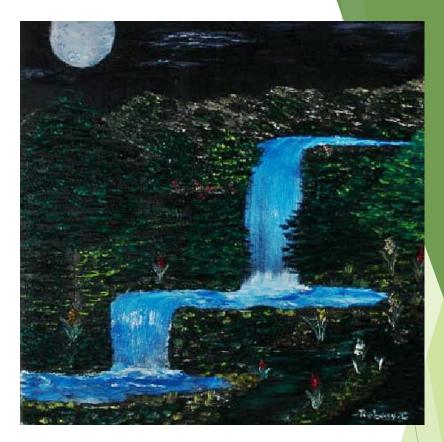
Source: Naviaux RK. Metabolic features of the Cell Danger Response. <u>Mitochondrion</u>. 2014 May; 16:7-17

It's all in your head!

The Relevance of Emotions on Health

The Heart as a Psychoneuroendocrine and Immunoregulatory Organ Carlo Dal Lin 1, Francesco Tona 1, Elena Osto 2 3

Abstract


The heart can be viewed not just as muscle pump but also as an important checkpoint for a complex network of nervous, endocrine, and immune signals. The heart is able to process neurological signals independently from the brain and to crosstalk with the endocrine and immune systems. The heart communicates with the psyche through the neuro-endocrineimmune system in a highly integrated way, in order to maintain the homeostasis of the whole body with peculiarities specific to males and females.

The heart is able to process neurological signals independently from the brain

(c) Dr Jess P Armine (unless otherwise noted) 2022

The heart communicates with the psyche through the neuro-endocrineimmune system in a highly integrated way

Dal Lin C, Tona F, Osto E. The Heart as a Psychoneuroendocrine and Immunoregulatory Organ. Adv Exp Med Biol. 2018;1065:225-239. doi: 10.1007/978-3-319-77932-4_15. PMID: 30051388.

The CDR results in a Cascade of Changes...

...temporary interference in: Lipid Dynamics

Cellular Electron Flow (Mitochondria-Energy) O2 Consumption (Krebs-Energy) IC Metal Homeostasis

 O^{\dagger}

(Biochemical

Pathways)

aggregation

(how we get heavy

metal burden just

by breathing)

When the Danger has Passed...

- Sequence of anti-inflammatory and regenerative pathways are activated to:
 - Reverse CDR
 - Promote Healing
 - The interference is removed, and homeostasis (normal cell function) restored (Think of it as RE-BOOTING).

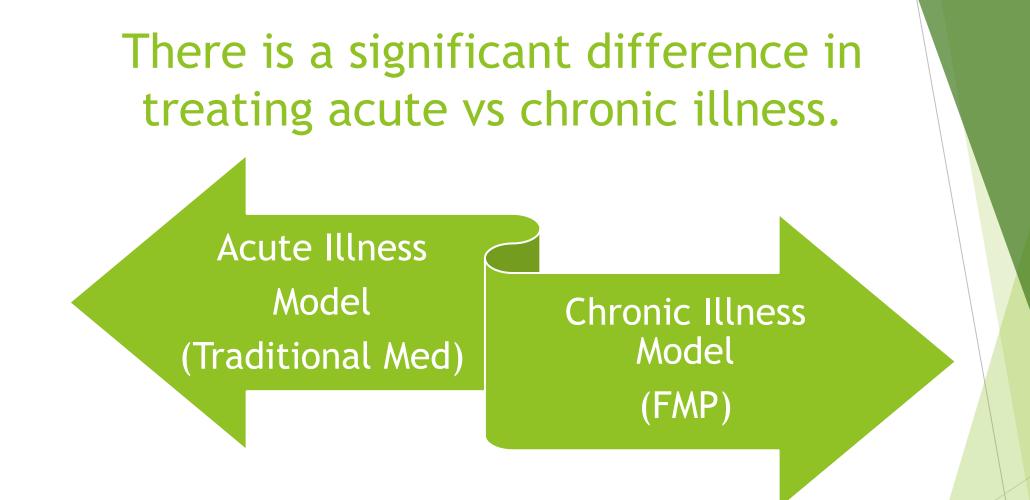
► BUT...

IN CHRONIC OR MULTIPLE CDR THE INTERFERENCE REMAINS AND WORSE, SYNERGIZES!

Chronic /Multiple CDR

Numerous Downstream effects (symptoms)

Healing Mechanisms will not re-boot.


The Negative Effects on the healing mechanisms synergize

Healing Becomes Impossible Unless Treating the Root Causes AND Downstream Effects

38

HERE'S WHERE THE DIVERGENCE BETWEEN ALLOPATHIC AND FMP THINKING OCCURS

(c) Dr Jess P Armine (unless otherwise noted) 2022

Contents lists available at ScienceDirect

Mitochondrion

journal homepage: www.elsevier.com/locate/mito

Metabolic features and regulation of the healing cycle-A new model for chronic disease pathogenesis and treatment

Robert K. Naviaux

The Mitochondrial and Metabolic Disease Center, Departments of Medicine, Pediatrics, and Pathology, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C102, MC#8467, San Diego, CA 92103, United States

terms and reframes the pathophysiology of chronic

block healing and cause the normal stages of the

ARTICLE INFO

Cell danger response

Mitochondrial nexus

Metabolic addiction

Purinergic signaling

Metabolic memory

Keywords:

Healing cycle

ABSTRACT

Without healing, multicellular life on Earth would not exist. Without healing, one injury predisposes to another, leading to disability, chronic disease, accelerated aging, and death. Over 60% of adults and 30% of children and teens in the United States now live with a chronic illness. Advances in mass spectrometry and metabolomics have given scientists a new lens for studying health and

Robert K. Naviaux, Metabolic features and regulation of the healing cycle-A new model for chronic disease pathogenesis and treatment. Mitoch (2018), doi:10.1016/j.mito. 2018.08.001

Metabokines Antipurinergic therapy M0, M1 and M2 mitochondria Ecoalleles Ecogenetics Allostasis Allostatic load Integrated stress response

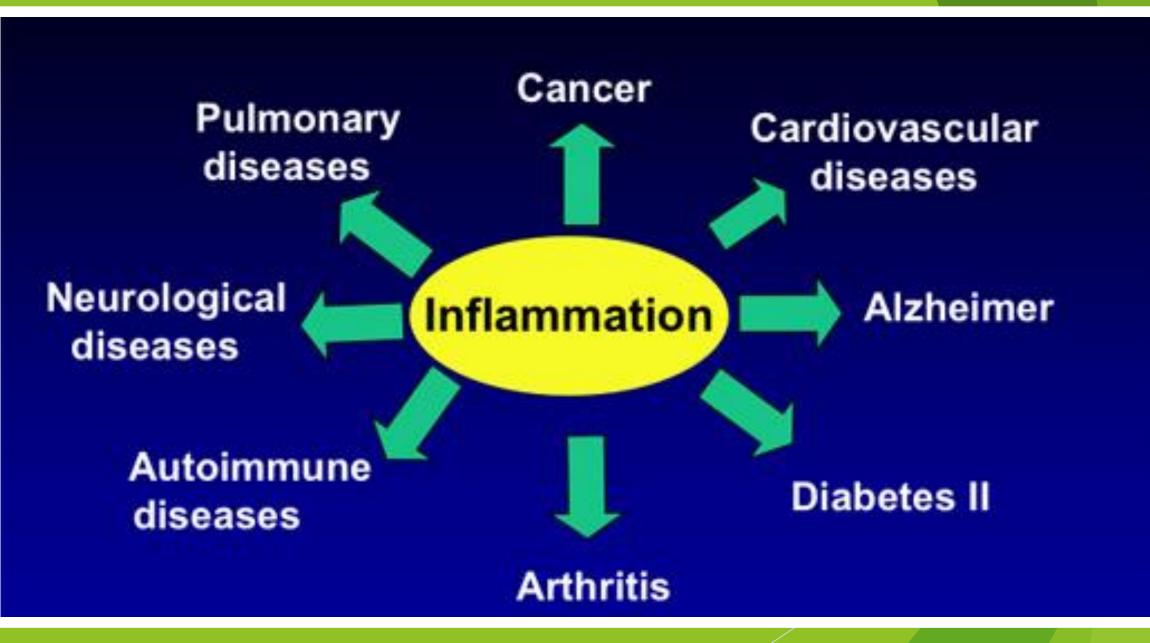
1. Introduction

Much of modern Western medicine is based on the principles of acute interventions for poisoning, physical injury, or infection. These principles trace to historical figures like Paracelsus (1493-1541), Ambroise Paré (1510-1590), and Louis Pasteur (1822-1895). These acute care interventions are now widely used in the modern fields of pharmacology, toxicology, urgent care, emergency medicine, and surgery. When caring for acute disruptions in health, the careful identification of the trigger, or cause of the problem, and the anatomical location of the defect, is an important part of good medical care. However, when dealing with chronic illness, treatments based on the rules of acute care medicine have proven less helpful, and can even cause harm by producing unwanted side-effects (Qato et al., 2018). (c) Dr Jess P Armine (unless otherwise noted) 2022 chronic illness, the original triggering event is often remote, and may no longer be present. Emerging evidence shows that most chronic illness is caused by the biological reaction to an injury, and not the

initial injury, or the agent of injury itself. For example, melanoma can

When caring for **acute** disruptions in injury occurs, active progress through the stages nergetics and the disposition of oxygen and carbo health, the careful identification of the covery. > 100 chronic illnesses can be organized in targetable chemosensory G-protein coupled and io healing. Metabokines are signaling molecules derive trigger, or cause of the problem, and the pathogenesis of chronic illness in this way, as a on remote trigger(s) that caused the initial injury, p the anatomical location of the defect, unblock the healing cycle, and restore health when is an important part of good medical be caused by su care. However, when dealing with traumatic stress bullet wound ha chronic illness, treatments more severe dise fore complete he the second injureven when the based on the rules of acute care Progressive dysft occurs in all org medicine have proven less helpful, and results when cell: and re-injury, un every chronic ill can even cause harm by producing recurrent infecti diabetic heart unwanted side-effects (emphasis pulmonary disea fatigue syndrom added) nesses, Alzheime Great strides

Check for



Back to CDR... A "STUCK" Cell Danger Response creates

And all the suffering we face...

(c) Dr Jess P Armine (unless otherwise noted) 2022

HOW INFLAMMATION AFFECTS THE BODY

"Inflammation is at the root of practically all known chronic health conditions" Find out how to prevent it at www.livelovefruit.com

1

BRAIN

Pro-inflammatory cytokines cause autoimmune reactions in the brain, which can lead to depression, autism, poor memory, Alzheimer's disease and MS.

SKIN

Chronic inflammation compromises the liver & kidneys, resulting in rashes, dermatilis, eczema, acne, psoriasis, wrinkles & fine lines.

CARDIOVASCULAR

Inflammation in the heart & orterial & venous walls contributes to heart disease, strokes, high blood sugar (diabetes) and anemia.

KIDNEYS

Inflammatory cytokines restrict bload flow to the kidneys. Complications like edema, hypertension, nephritis & kidney failure can result.

BONES

Inflammation interferes with the body's natural ability to repair bone mass, increasing the number of fractures & leading to conditions like asteoparosis.

(c) Dr. Jess P. Armine 2018

LIVER

Build-up of inflammation leads to an enlarged liver or latty liver disease. Increased taxic load build-up in the body.

THYROID

Autoimmunity as a result of inflammation can reduce total thyraid receptor count & disrupts thyraid hormone function.

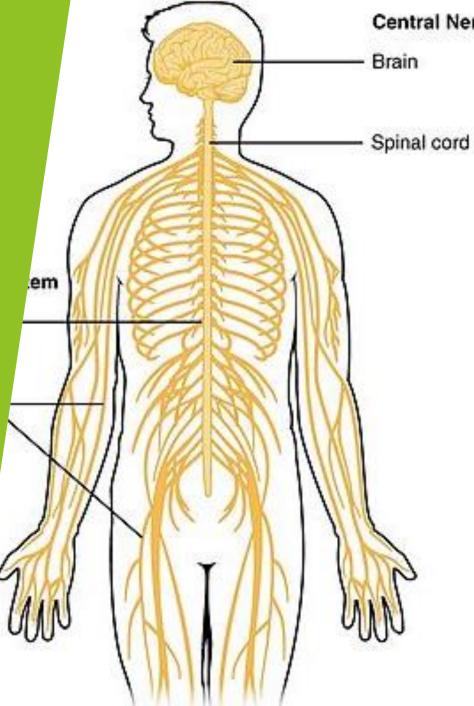
LUNGS

Inflammation induces autoimmune reactions against the linings of airways. Can result in allergies or automa.

GI TRACT

Chronic inflammation damages our intestinal lining and can result in issues like GERD, Chron's disease and Celloc disease.

MUSCLE

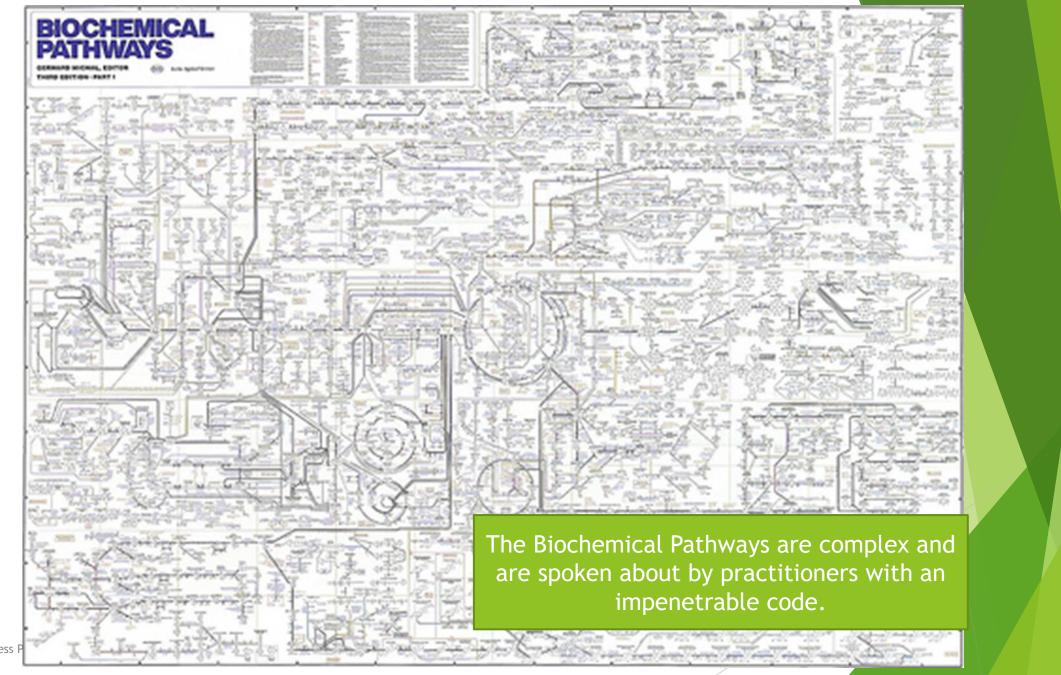

Inflammatory cytokines can cause muicle pain & weakness. Can manifest as carpal tunnel syndrome, or polymyalgia rheumatica, to name a few.

Chronic Inflammation Has Caused a Rise In Health Issues

- Cardiovascular Issues
- ► GI (stomach) issues
- Diabetes
- Metabolic Disorders
- "Adrenal Fatigue"
- But The #1 Target For CIRS (Chronic Inflammatory Response Syndrome AKA Chronic Inflammation) Is In The.....

(c) Dr Jess P Armine (unless otherwise noted) 2022

Central Nervous St


Nervous System

- ASD
- Anxiety
- OCD \blacktriangleright
- Migraines/Headaches
- Addictions/Cravings
- **Behavioral Issues**
- Dysautonomia (POTS, etc.)
- Neuropathies
- PMS/Menopausal disorders
- ADD/ADHD
- Depression
- Many More...

(c) Dr Jess P Armine (unless otherwise noted) 2022

(c) Dr Jess

http://biochemical-pathways.com/#/map/1

SNP's (AKA Polymorphisms)...What Do They Mean?

They are an Estimate of the Enzyme's Function Think of highways of differing widths

+/-

Normal Usual Enzyme Function Heterozygous 60% Enzyme Function

Homozygous 20% Enzyme Function

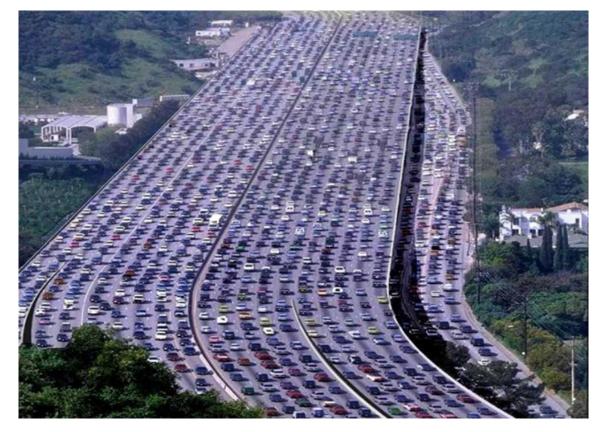
48

Traffic^{*} Will Slow Down the Pathway's Function

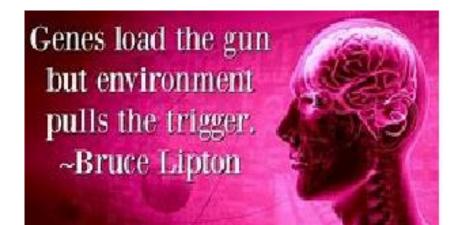
+/-

*Traffic = bacteria, heavy metals, viruses, parasites, food allergens, candida, Leaky Gut Syndrome, lack of substrate, lack of cofactors, and coenzymes, presence of factors that will speed up or slow down enzymatic activity, etc. **Timeless Wisdom**

THE PRESENCE OF & POLYMORPHISM DOES NOT MEAN YOU'RE ILL


THE LACK OF A POLYMORPHISM DOES NOT MEAN YOU'RE WELL

DR. JESS

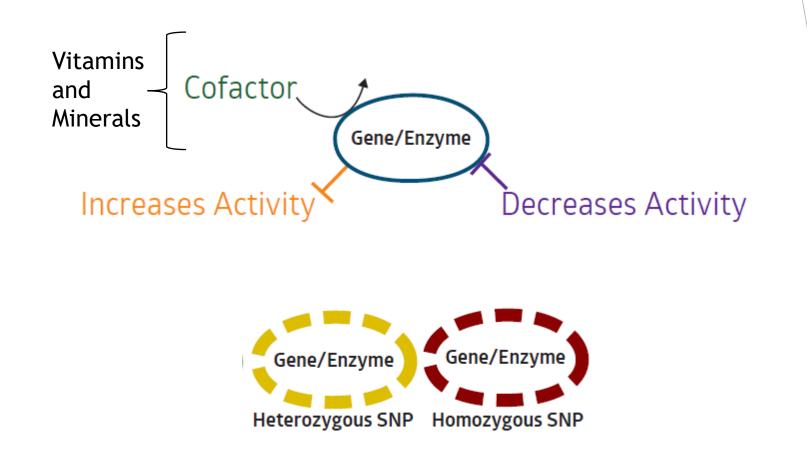

The lack of a polymorphism (SNP) is not a guarantee that the pathway will work adequately.

Think about it. Can you put enough traffic into an 8-lane highway to slow it down? YA THINK?

-/-

(c) Dr Jess P Armine (unless otherwise noted) 2022

Words: WISDOM

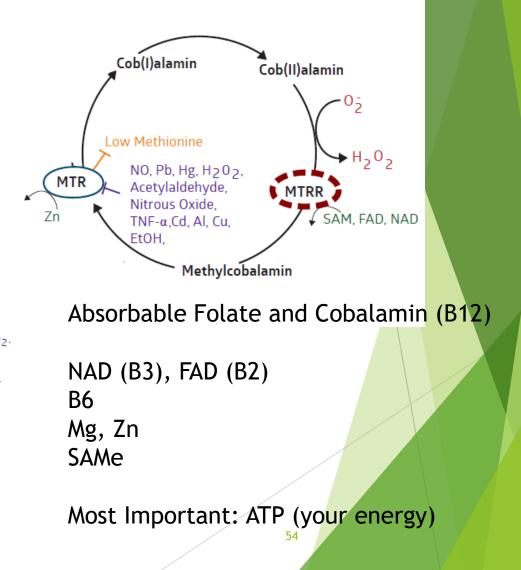

loads the gun, but

LIFESTYLE

pulls the trigger.

The role of nutrition In optimizing pathway *function*


(c) Dr Jess P Armine (unless otherwise noted) 2022



Courtesy of Dr Ben Lynch. Used with permission

The role of nutrition and supplementation

FOLATES (GREEN LEAFY VEGES)

Courtesy of Dr Ben Lynch. Used with permission

What Predispositions?

- Excitation as expressed by Anxiety, OCD, ADD, etc.
- Pathway needs:
- Inhibitory support (Serotonin, GABA)
 - SAM
 - ▶ B6, Vit C
 - ▶ B1, B2 B3
 - ► Mg, Cu
 - PQQ

B6 SAM, Mg DDC 3-Methoxytyramine 🖊 COMT TYROSINE >> L DOPA>>>> Dopamine H-0-FAD Vit C NAD,B1 SAM DBH MA0 HVA Cu², PQQ Serotonin PAPS Norepinephrine SAM, Mg SULT1A3) Dopamine 3-0 Sulfate COMT K. PNMT SAM -AD Epinephrine -> 3,4 DHPGA NAD, B1 SAM,Mg ALDH2 COMT Normetanephrine Serotonin 3,4-DHM Metanephrine SAM, Mg COMT 3-Methoxy-4HPGA NAD, B1 Always need to consider, ALDH3A2 what pulled the trigger? VMA

	1310080	ADI 11 3401	~			1					
	rs1049748	ABP1 P574P	Т	CT	+/-]					
	rs1049793	ABP1/DAO H664A	G	CG	+/-		rs2073440	HDC A1932C	G	Π	
	rs1049742	ABP1/DAO S332P	T	CC	-/-		rs17740807	HDC C92T	Ă	ĞĞ	
	rs10156191	ABP1/DAO T16M	T	CT	+/-						<u> </u>
	rs6911472	CNR1 A88853143C	c	AA	-1-		rs854158	HDC T10086C	G	AG	
4	rs6928813	CNR1 A88861698G	G	AA	-1-		rs16963486	HDC T1657C	G	AA	
-	rs806380	CNR1 A88864653G	G	AG	+/-		rs1800708	HFE 10795T>C	č	π	
	rs806381 rs7752758	CNR1 A88865901G CNR1 A88866376G	G	AG					v		<u> </u>
	rs12528858	CNR1 A88867488G	G	ÂÂ			rs2071302	HFE 11622T>C	C	Π	
	rs806378	CNR1 C88859551T	Ť	टी	+/-		rs2794719	HFE 6382T>G	G	GT	
	rs9450898	CNR1 C88864063T	t †	čć	-/-				Ť	CC	-
	rs4707436	CNR1 G88851751A	Å	GG	-/-		rs9366637	HFE 6590C>T			_
	rs6454673	CNR1 G88871049A	G	GG	+/+		rs2071303	HFE 8828T>C	C	Π	
	rs1049353	CNR1 T453T	Т	CC	-/-		rs1800562	HFE C282Y	A	GG	
	rs806368	CNR1 T88850100C	С	Π	1		rs1799945	HFE H63D	G	CC	
	rs12720071	CNR1 T88851181C	С	Π					9		-
	rs806369	CNR1 T88856178C	Т	Π	+/+		S 1050900	HNMT A*218T		AA	
	rs806374	CNR1 T88857320C	T	Π	+/+		200 C	HNMT A47507G	G	AA	
	rs806376	CNR1 T88858648C	ç	CT	+/-			HNMT C29232A	٨	CC	
	rs806377 rs6454672	CNR1 T88858723C CNR1 T88861570C			+/-						
	rs12205430	CNR1 T88867925C	č	π	-/-		rs6430764	HNMT C3616T		Π	
	rs6454674	CNR1 T88872930G	Ť	Η̈́	+/+		rs1050891	HNMT T939C	G	AA	
	rs2502993	CNR2 A282A	Å	AG	+/-		rs347591	HRH1 G11290122T	G	GT	
	rs2501431	CNR2 G155G	Â	ÂĞ	+/-				-		-
	rs16828926	CNR2 G24215130A	Â	AG	+/-		rs2067466	HRH1 G57C	C	GG	
	rs2501432	CNR2 G63A	T	CT	+/-		rs7651620	HRH1 G809A	A	GG	
	rs2229579	CNR2 H316T	A	GG	-/-		rs346070	HRH1 T*1687C	T	CT	
	rs4649124	CNR2 L251L	A	AG	+/-				÷		-
	rs9424398	CNR2 T24221834G	G	GT	+/-		rs901865	HRH1 T-17C		CT	
	G3741775	DAO A14747C	C	AC	+/-		rs11662595	HRH4 A817G	G	AG	
	18347	DAO A24464G	G	AA	-/-		rs11665084	HRH4 C413T	T	CT	
	> √4086	DAO C109286399T	T	cc	-/-					GG	
	1300	DAO G109284478T DAO G8864A	G	GG GG	+/+		rs4800573	HRH4 G'2144A	A		
	rs7980427	DAO G8864A DAO S93S	A	GG			rs1421125	HRH4 G*385T	T	GG	
	rs2070587	DAO 5935 DAO T887G	<u> </u>	π	+/+		rs16940765	HRH4 T3537649C	С	Π	
	rs2111902	DAO 19891G	+ +	H H	+/+		rs7997012	HTR2A T64185C	G	AG	
		210100010	-				15/38/012	H1R2A 104100C	0	NG	1

Histamine

Extracellular

Intracellular

(c) Dr Jess P Armine (unless otherwise noted) 2022

1310000

WHY IS HISTAMINE IMPORTANT?

56

+/-

+

+/-

+-+/+ -/-+/-

--+-+-+-+-

+/-

Adv Exp Med Biol. 2010;709:95-107.

Histamine in neurotransmission and brain diseases.

Nuutinen S¹, Panula P.

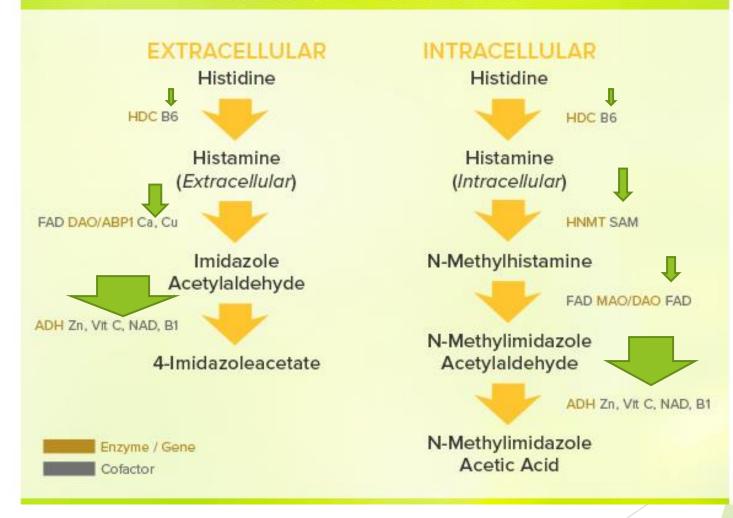
Author information

Abstract

The central histamine system is involved in many brain functions such as arousal, control of pituitary hormone secretion, suppression of eating and

cognitive functions.

n instamine Apart from its central role in the mediation of allergic reactions, gastric acid secretion and inflammation originate from the serves an important function as a neurotransitter in the central nervous system. The histaminergic neur tuberomamillary nucleus of the posterior hypothalamus and send projections to most parts of the brain. The central histamine system is involved in many brain functions such as arousal, control of pituitary hormone secretion, suppression ofeating and cognitive functions. The effects of neuronal histamine are mediated via G-protein-coupled H1-H4 receptors. The prominent role of histamine as a wake-promoting substance has drawn interest to treat sleep-wake disorders, especially narcoleps/y, via modulation of H3 receptor function. Post mortem studies have revealed alterations in histaminergic system in neurological and psychiatric diseases. Brain histamine levels are decreased in Alzheimer's disease patients whereas abnormally high histamine concentrations are found in the brains of Parkinson's disease and schizophrenic patients. Low histamine levels are associated with convulsions and seizures. The release of histamine is altered in response to different types of brain injury: e.g. increased release of histamine in an ischemic brain trauma might have a role in the recovery from neuronal damage. Neuronal histamine is also involved in the pain perception. Drugs that increase brain and spinal histamine concentrations have antinociceptive properties. Histaminergic drugs, most importantly histamine H3 receptors ligands, have shown efficacy in many animal models of the above-mentioned disorders. Ongoing clinical trials will reveal the efficacy and safety of these drugs in the treatment of human patients.


PMID: 21618891

The prominent role of histamine as a wake-promoting substance has drawn interest to treat sleep-wake disorders, especially narcolepsy, via modulation of H3 receptor function.

(c) Dr Jess P Armine (unless otherwise noted) 2022

57

HISTAMINE PATHWAY

An Excellent example of how genetics can help us

Newborn screening for autism: in search of candidate biomarkers

Background: Autism spectrum disorder (ASD) represents a wide range of neurodevelopmental disorders characterized by impairments in social interaction, language, communication and range of interacts. Autism,

is usually diagnosed in children 3–5 years of age using b birth would be beneficial for early initiation of treatme newborns at risk for ASD utilizing bloodspot specimens i study utilized stored frozen specimens from ASD child newborn specimens and controls were analyzed by immu

Aim: This retrospective study sought to identify newborns at risk for ASD

biomarkers and subjected to statisical analysis. **Results:** Three sets of five biomarkers associated with ASD were found that differed from control groups. The 15 candidate biomarkers were then discussed regarding their association with ASD. **Conclusion:** This study determined that a statistically selected panel of 15 biomarkers successfully discriminated presumptive newborns at risk for ASD from those of nonaffected controls.

Mizejewski, G. J., Lindau-Shepard, B., & Pass, K. A. (2013). *Newborn screening for autism: in search of candidate biomarkers. Biomarkers in Medicine, 7(2), 247–260.* doi:10.2217/bmm.12.108

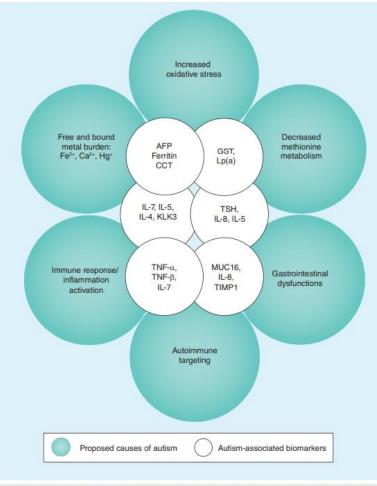


Figure 3. A circle model of proposed causes of autism versus screen-selected biomarkers. A circle model of the proposed six causes of autism is shown on the outer circles, while the inner overlapping circles indicate the biomarkers associated with the causative metabolic or immune response/inflammation events. The overlap of the outer and inner circles indicates the degree of association of the two agents. The proper use of epigenetics here is to raise your "Index of Suspicion" of pathways that would be compromised under an oxidative stress load.

The benefit of this type of research is that the epigenetics point to possible specific dysfunctions under an oxidative stress load.

These dysfunctions are identified as root causes of autism. All very true.

The knowledge of these will allow you to intervene in the presence of the pathology.

Of great benefit is to know the probabilities so that you can prevent the occurrence of pathology.

Mizejewski, G. J., Lindau-Shepard, B., & Pass, K. A. (2013). *Newborn screening for autism: in search of candidate biomarkers. Biomarkers in Medicine, 7(2), 247–260.* doi:10.2217/bmm.12.108

Is this premise correct??.....NO

Newborn screening for autism: in search of candidate biomarkers

Background: Autism spectrum disorder (ASD) represents a wide range of neurode elopmental disorders characterized by impairments in social interaction, language, communication and range of interests. Autism is usually diagnosed in children 3–5 years of age using behavioral characteristics; thus, diagnosis shortly after birth would be beneficial for early initiation of treatment. **Aim:** This retrospective study sought to identify newborns at risk for ASD utilizing bloodspot specimens in an immunoassay. **Materials & methods:** The present study utilized stored frozen specimens from ASD children already diagnosed at 15–36 months of age. The newborn specimens and controls were analyzed by immunoassay in a multiplex system that included 90 serum

biomarkers and subjected to st were found that differed from their association with ASD. **Conc** successfully discriminated presu

"diagnosis shortly after birth would be beneficial for early initiation of treatment"

Presumption is that you are born with Autism. Although this entire paper refutes that premise, it is a commonly held belief.

Mizejewski, G. J., Lindau-Shepard, B., & Pass, K. A. (2013). *Newborn screening for autism: in search of candidate biomarkers. Biomarkers in Medicine, 7(2), 247–260.* doi:10.2217/bmm.12.108

GLITCH: The Definition of "DIAGNOSIS"

investigation or analysis of the <u>cause or nature of a condition, situation, or problem</u>

SYMPTOM(S)

- Sore throat
- ► IBS
- "Hyperacidity"
- Effects of root causes

DIAGNOSISStrep Throat

- Celiac Disease
- H.Pylori induced gastritis
- Root Causes

A descriptive "diagnosis" of the syndrome often leads to suboptimal clinical results as the investigation into root causes ceases.

"Diagnosing" an infant at birth with autism based on genetic polymorphisms may have the counterproductive effect of labeling, the feeling that nothing can be done, and the parents may be dissuaded from making healthy choices for the child that would prevent Autism.

(c) Dr Jess P Armine (unless otherwise noted) 2022

<u>*https://www.merriam-</u> webster.com/dictionary/diagnosis 62

"Newborn screening for autism: in search of candidate biomarkers"* The Learning Points.

The authors prove, on an acceptable scientific basis:

- That autism has root causes.
- There may be predictive power in determining the genetic SNPs.
- In so doing, within their pathways, the SNPs provide a map for the clinician in either treatment or prevention.

(c) Dr Jess P Armine (unless otherwise noted) 2022

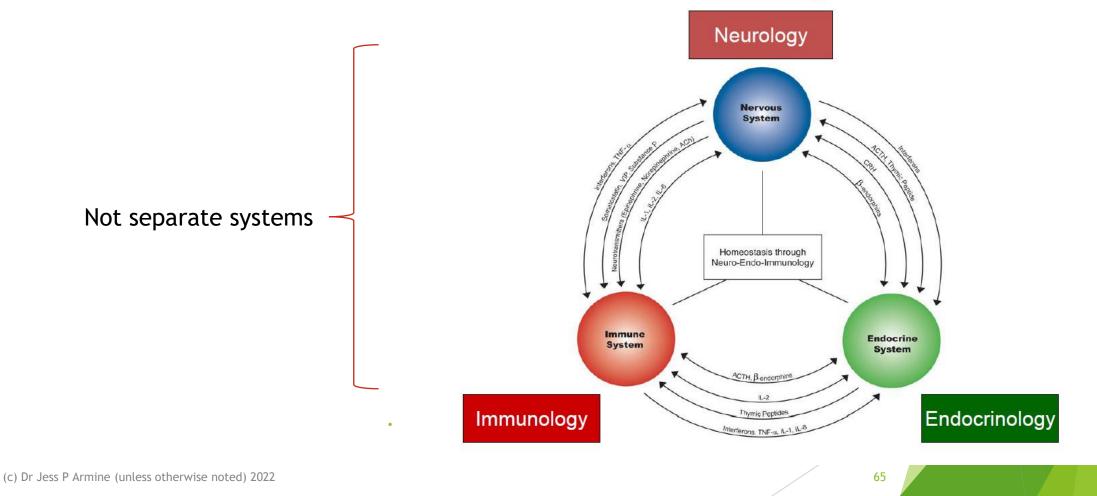
*Mizejewski, G. J., Lindau-Shepard, B., & Pass, K. A. (2013). *Newborn screening for autism: in search of candidate biomarkers. Biomarkers in Medicine, 7(2), 247–260.* doi:10.2217/bmm.12.108

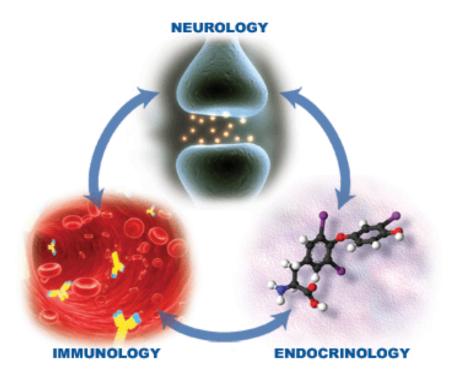
X

Your genes are not your destiny

What have we learned?

Proper knowledge of SSNPs will raise your index of suspicion for certain types of pathology. Knowledge of the necessities of the biochemical pathways give you actionable treatment possibilities.


₿


It's simply one set of data.

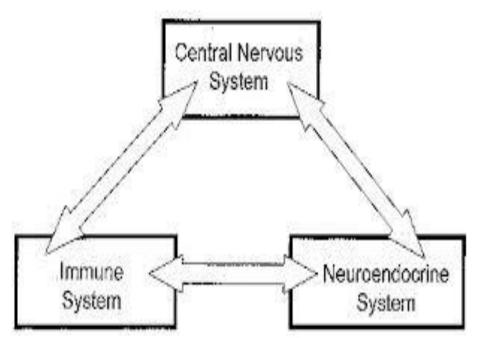
54

Neuro-Endo-Immunology The "NEI Supersystem"

Shift from Linear to Integrated Medicine

Each System has Unique Biomarkers

The Neurological System's Biomarkers: Neurotransmitters (Serotonin, GABA, Glutamate, Dopamine, Epinephrine, Norepinephrine, PEA)


Endocrinology (glands, etc.) biomarkers:

Hormones (estrogen, progesterone, insulin, thyroxine, etc.)

The Immune system's biomarkers: Cytokines (II-12, TNF-α, TGF-β, II-4, IFN-Ƴ)

(c) Dr Jess P Armine (unless otherwise noted) 2022

All systems have receptors for each others' systems

- Neuro system has receptors for cytokines and hormones
- Endo system has receptors for neurotransmitters and cytokine
- Immune system has receptors for neurotransmitters and hormones

Neuroendocrine Interactions in the Immune System

Dennis D. Taub[†]

Author information > Copyright and License information <u>Disclaimer</u>

The publisher's final edited version of this article is available at <u>Cell Immunol</u> See other articles in PMC that <u>cite</u> the published article.

Abstract

Substantial evidence now exists supporting the bidirectional communication between and immune systems. A number of hormonal and neuropeptide mediators have been immune development and function in healthy, aged and diseased individuals. Immune receptors for many of these ligands and similarly, receptors for cytokines and growth factor. Identified on cells within the central nervous and endocrine systems. During times of stress or injury, considered of these systems come into play and transmits messages to one another. The lines of communication between the immune system and these various neuronal and endocrine organ systems constitute specific axes of interactions, which have been shown to have a profound impact on immune function, disease development and susceptibility to infections and disease. In this Special Issue, experts in neuroendocrine immunology have provided comprehensive reviews on the current advances in this area of research as well as commentary on relevance of the various axes in controlling immunity and disease development.

Keywords: Neuroendocrine, Immunity, Hormones, Neuropeptides, Hypothalamic-Pituitary-Adrenal (HPA), Stress, Thymus, Sympathetic Nervous System

Substantial evidence now exists supporting the bidirectional communication between the neuroendocrine and immune systems.

Taub DD. Neuroendocrine interactions in the immune system. Cell Immunol. 2008;252(1-2):1–6. doi:10,1016/j.cellimm.2008.05.006 Format: Abstract -

Adv Exp Med Biol. 2017;996:123-134. doi: 10.1007/978-3-319-56017-5_11.

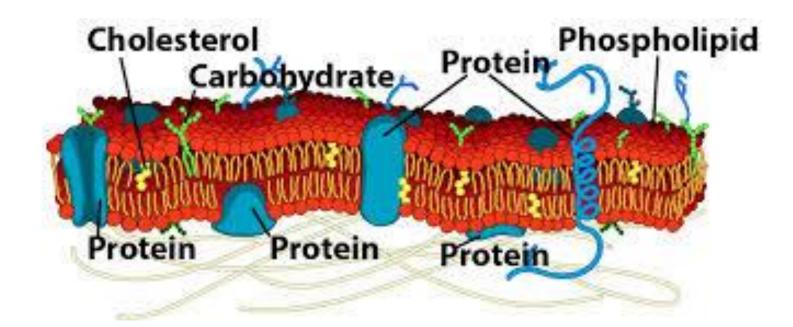
Psycho-Neuro-Endocrine-Immunology: A Psychobiological Concept.

França K1,2, Lotti TM3.

Author information

- 1 Centro Studi per la Ricerca Multidisciplinare e Rigenerativa, Universita Degli Studi "G. Marconi", Rome, Italy.
- 2 Institute for Bioethics & Health Policy; Department of Dermatology & Cutaneous Surgery; Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA.
- 3 Centro Studi per la Ricerca Multidisciplinare e Rigenerativa, Universita Degli Studi "G. Marconi", Rome, Italy. professor@torellolotti.it.

Abstract


Psycho-Neuro-Endocrine-Immunology (P.N.E.I.) is a scientific field of study that investigates the link between bidirectional communications among the nervous system, the endocrine system, and the immune system and the correlations of this cross-talk with physical health. The P.N.E.I. innovative medical approach represents a paradigm shift from a strictly biomedical view of health and disease taken as hermetically sealed compartments to a more interdisciplinary one. The key element of P.N.E.I. approach is represented by the concept of bidirectional cross-talk between the psychoneuroendocrine and immune systems. The Low Dose Medicine is one of the most promising approaches able to allow the researchers to design innovative therapeutic strategies for the treatment of skin diseases based on the rebalance of the immune response.

https://www.ncbi.nlm.nih.gov/pubmed/29124696

Psycho-Neuro-Endocrine-Immunology (P.N.E.I.) is a scientific field of study that investigates the link between bidirectional communications among the nervous system, the endocrine system, and the immune system and the correlations of this cross-talk with physical health.

What have we learned about the NEI supersystem

- We have learned that the neurological, endocrine, and immune systems constantly communicate with one another.
- The mechanism of this is the fact that each system has the receptors for the other systems' biomarkers.
- When one system is compromised it will affect the other systems.
- The NEI super system removes diagnosis and treatment from a single discipline to a more multidisciplinary approach. Dare I say, a more holistic approach?

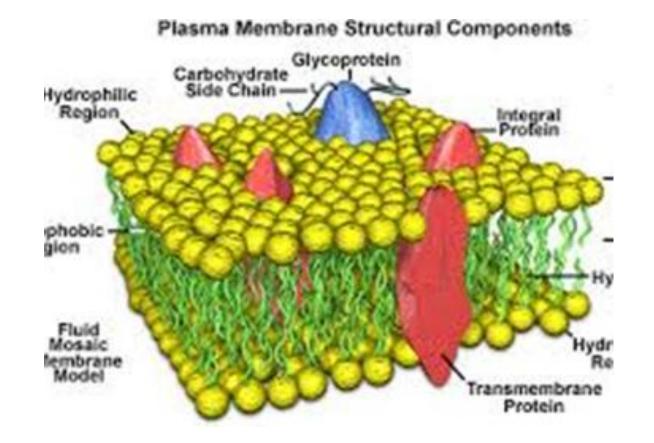
Cell Membrane Integrity

Important and often overlooked!

Source: sciencemusicvideos.com

The "Master" of the Cell Physiology The Cell Membrane

The cell membrane is selectively permeable protecting homeostasis.


Allows for the sending of messages throughout the body (depolarization/repolarization of neural impulses)

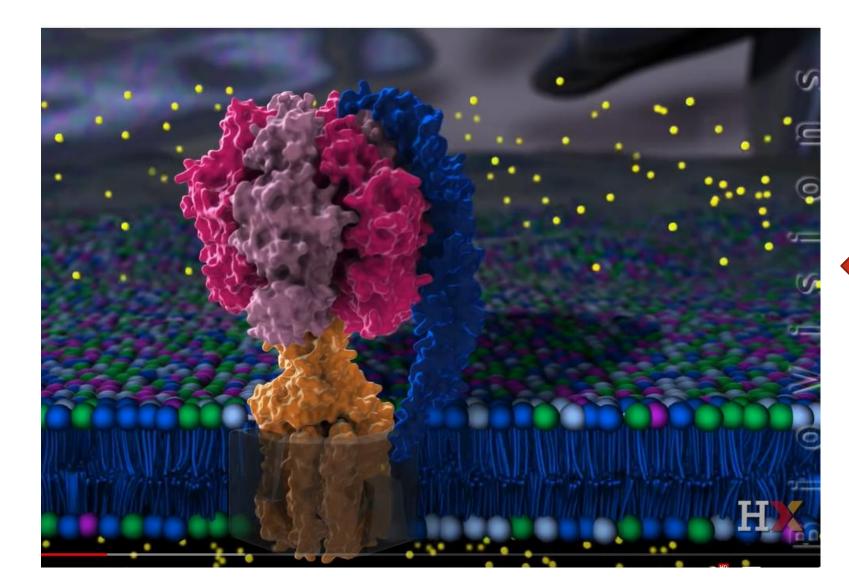
Contains integral proteins, transmembrane proteins (acting as pumps or channels)

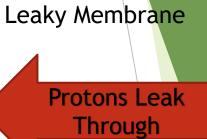
Contains receptors that provide for the signaling of various biological functions.

Please a key role in the immune process.

"Leaky" Cell Membranes

Interrupts all physiological processes including:


- Neural transmission, integral and transmembrane protein function.
- Most importantly, interferes with the immune system's ability to differentiate between self and nonself.

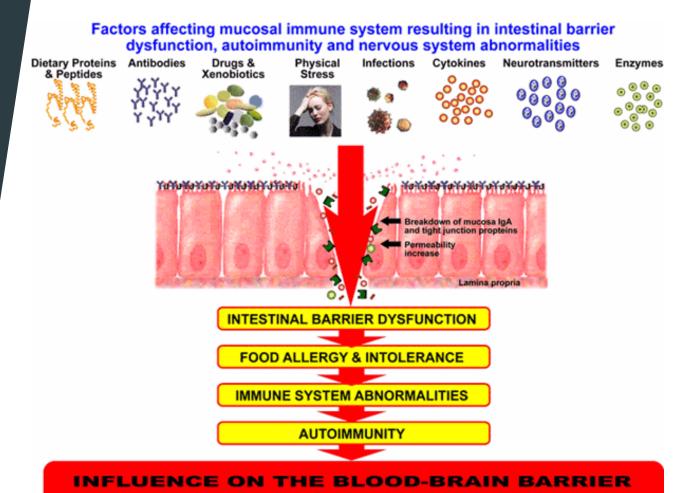

ATP Synthase Complex V

Patent Cell Membrane

(c) Dr Jess P Armine (unless otherw

Energy production stops and cell death occurs

Cell Biology: Mitochondria | edX


Leaky Gut Syndrome

The most common causation of chronic inflammation

► AND

► The easiest to fix.

http://www.glutenfreesociety.org/gluten-free-societyblog/leaky-gut-syndrome-is-gluten-at-the-root

AND NEUROAUTOIMMUNITY

For Those who like things complex 😳

[MECHANISMS OF DISEASE] **DE STORY** Investigators do not know every detail of how the immune system wreaks havon with the intestinal lining of celiac patients, but they have identified a number of TOTAL MARKED TOTALIZED TOTALISE TRADUCT likely processes (below). Colored arrows indicate events that might be blocked 9 The various by interventions now being investigated [see table on opposite page]. assaults disable and kill enterocytes. 1 Indigestible fragments of gluten Induce enterocytes to release the protein zonulin, which loosens tight junctions. Indigestible gluten Damaged fragment area Zonuli Disrupted junction T cell secretions (chemokines and Intraepithelial lymphocyte cytokines) TTG -Tissue transglutaminase .3.* (TTG), an enzyme re-. . IL-15 -77 Helper T cells leased by the damaged 47. est spur killer cells, modifies the aluten. T cells to . Tight directly attack junction Modified aluten enterocytes. Antibody against TTG Enterocyte Antigenpresenting -Mature B cell cell. 2 Gluten fragments The gluten induces enterocytes to secrete Helper T cell cross the intestinal Mature B cell B cells release antibody lining in abundance Interleukin-15 (IL-15), HLA-DQ2 molecules targeted to and accumulate which arouses or HLA-DQ8 gluten and TTG. Those immune cells called under epithelial antibodies might cause cells (enterocytes). intraepithelial Antigen-presenting cells of 6 Helper T cells that recognize the further damage when lymphocytes against the immune system join the complexes secrete molecules that they hit their targets on modified gluten to HLA enterocytes. attract other immune cells and or near enterocytes, but molecules and display the can directly damage enterocytes. the role of antibodies in resulting complexes to other the disease is unclear. Immune cells: helper T cells.

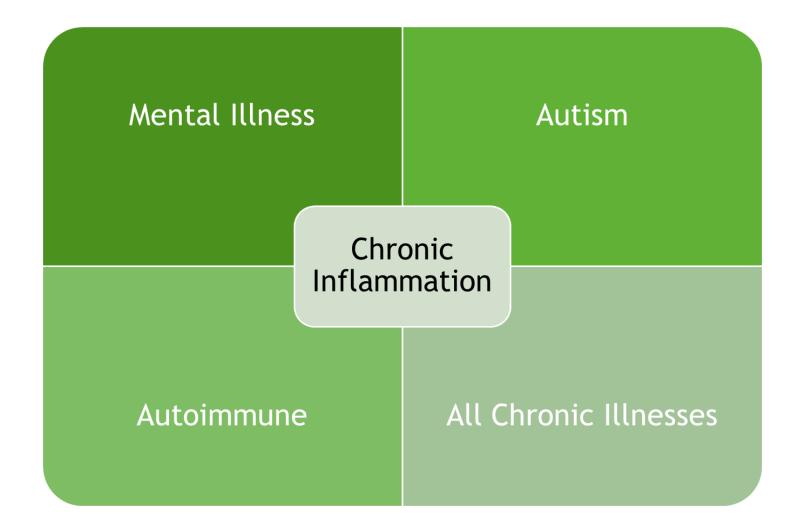
(c) Dr Jess P Armine (unless othe

Gut–brain axis: how the microbiome influences anxiety and depression

Jane A. Foster 🖾, Karen-Anne McVey Neufeld

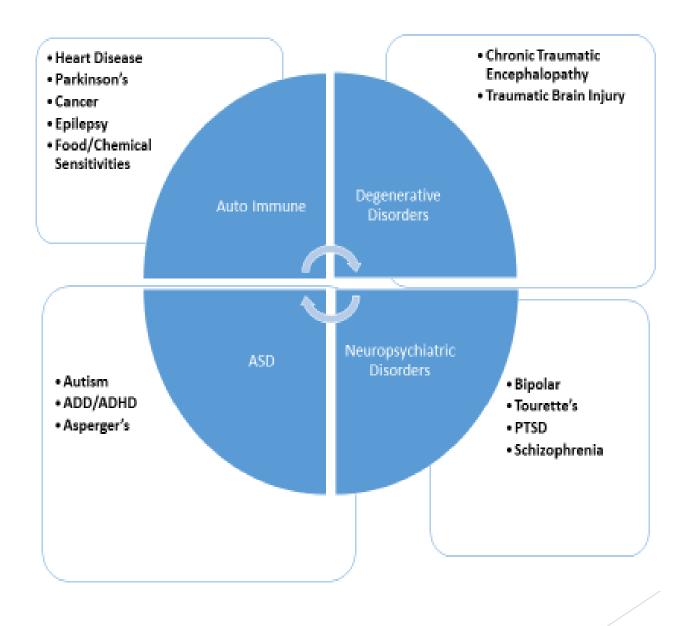
Show more

https://doi.org/10.1016/j.tins.2013.01.005


Get rights and content

Within the first few days of life, humans are colonized by commensal intestinal microbiota. Here, we review recent findings showing that microbiota are important in normal healthy brain function. We also discuss the relation between stress and microbiota, and how alterations in microbiota influence stress-related behaviors. New studies show that

New studies show that bacteria, including commensal, probiotic, and pathogenic bacteria, in the gastrointestinal (GI) tract can activate neural pathways and central nervous system (CNS) signaling systems.


athogenic bacteria, in pathways and central 1g and future animal and robiota–gut–brain axis 1d treatment of mental

Jane A. Foster, Karen-Anne McVey Neufeld, Gut-brain axis: how the microbiome influences anxiety and depression, Trends in Neurosciences, Volume 36, Issue 5, 2013, Pages 305-312, ISSN 0166-2236,

Chronic Inflammation and CIRS (Chronic Inflammatory Response Syndrome) are equivalents

Reference for the last slide

Source: Robert K. Naviaux, Metabolic features of the cell danger response, Mitochondrion, Volume 16, 2014, Pages 7-17, ISSN 1567-7249, https://doi.org/10.1016/j.mito.2013.08.006.

How to fix a Leaky Gut

Principles:

We need to fully digest foods. Undigested foods make up most of the antigens that enter our bodies. (*Digestive Enzymes*)

We need to re-create the mucus layer in the gut. The mucus layer is where the microbiome lives, what they eat, and where they do their work. The mucus layer traps antigens, toxins, xenobiotics and forms the initial layer of protection. (FOS, GOS, XOS, HOS)

We need to repair the cells and the tight junctions. This area is our second layer of defense preventing the entry of the above mentioned into our bodies. (Butyrate, Zn Carnosine, SBI)

We need to re-populate the GI tract with an adequate diversity of biota. (*Probiotics*)

(c) Dr Jess P Armine (unless otherwise noted) 2022

Miraculous (Almost) Leaky Gut Mucosal Butter

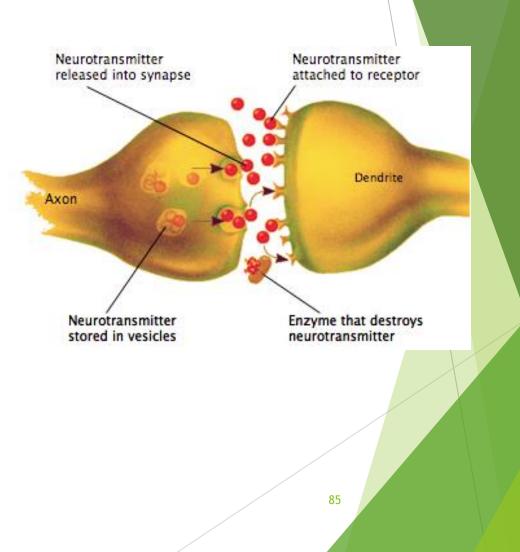
- Leaky Gut Mucosal Butter is a simple self-blended product that is showing rapid improvement in cellular repair. It is safe, easy to source, and easy to make.
- Who should use this:
 - Those who want to resolve their cell wall integrity issues that have led to chronic inflammatory symptoms like:
 - Autoimmune diseases
 - ASD
 - Multiple and Extensive Food Intolerances
 - ME/CFS
 - Fibromyalgia
 - Almost any inflammatory condition

Leaky Gut Mucosal Butter Ingredients

- Organic Extra Virgin Olive Oil ½ cup
- Organic Salted Butter ¼ cup (if dairy sensitive use ¼ cup coconut, almond, or hempseed oil instead)
- Unpasteurized Natural Honey: 2 Tablespoons
- Probiotics 5 capsules
- Zinc L Carnosine 4 capsules (Seeking Health, Pure Encapsulations)
- Sialex (Ecological Formulas): 4 capsules
- SunButyrate TG (Pure Encapsulations): 1 oz.
- > OPTIONAL: L Glutamine powder: 4 scoops.
- FOR MANY OF MY PATIENTS, INCREASED GLUTAMINE = INCREASED GLUTAMATE AND NEURAL EXCITATION. USE WITH CAUTION IF YOU SUFFER FROM ANXIETY, OCD, OR ANY OF THE OTHER EXCITATORY DISORDERS. IT'S OK TO OMIT THIS IF YOU ARE UNSURE.

- INSTRUCTIONS:
- Open the capsules and pour out the powder into the blender. Add the oil, butter, and honey.
- Blend on high for approximately two minutes or until the substance is smooth. Then refrigerate. By morning will be able to use the "butter".
- NOTE: You can take the butter "straight" or put on any food that you desire (toast, etc.)

Add Serum Derived Bovine Immunoglobulin Isolate* (6 caps) when there is low SIgA

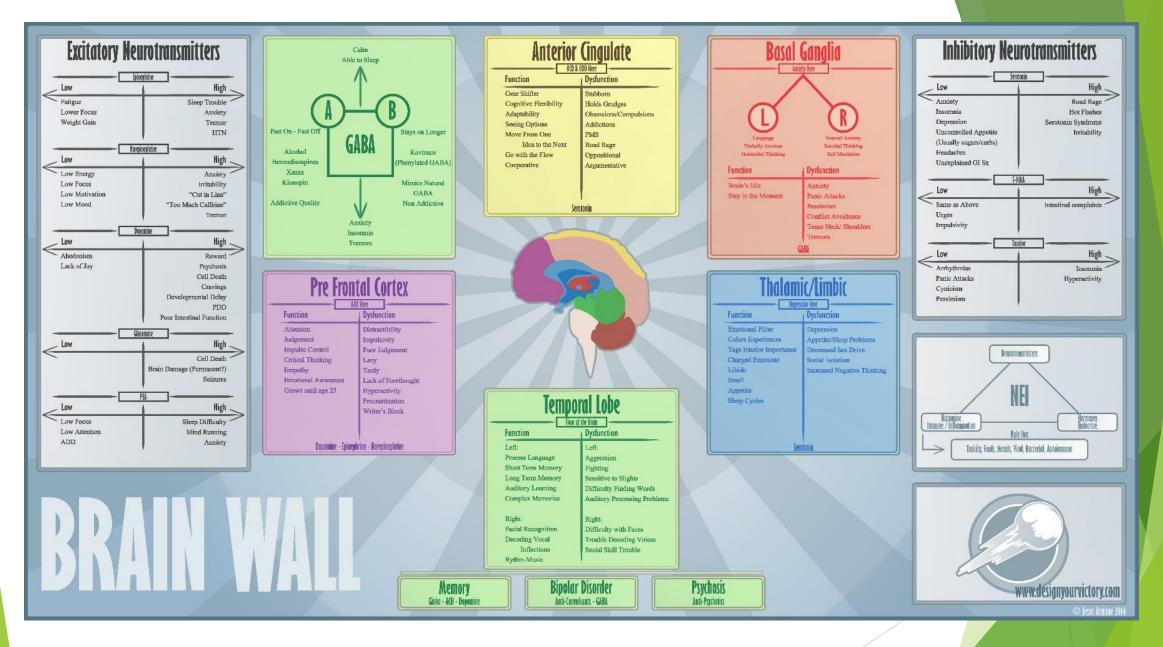

> *Hammad Liaquat, Munish Ashat, Abigail Stocker, Lindsay McElmurray, Karen Beatty, Thomas L. Abell, Gerald Dryden, Clinical Efficacy of Serum-Derived Bovine Immunoglobulin in Patients With Refractory Inflammatory Bowel Disease, The American Journal of the Medical Sciences, Volume 356, Issue 6, 2018, https://doi.org/10.1016/j.amjms.2018.08.019.

> > 84

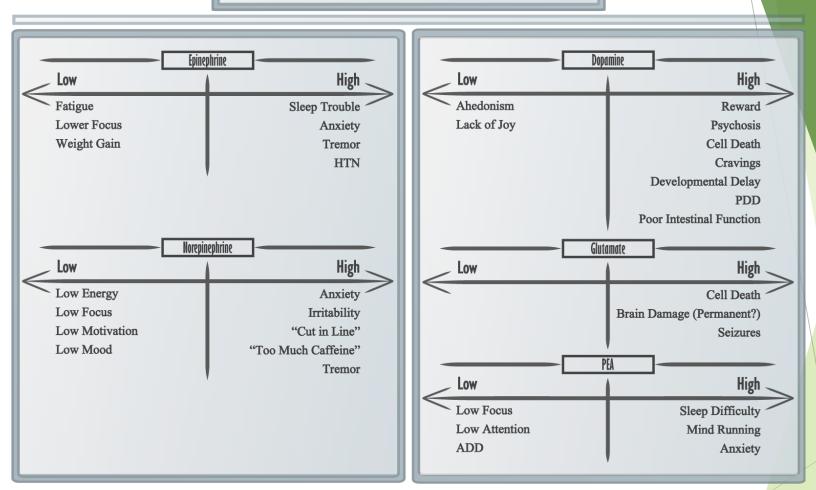
(c) Dr Jess P Armine (unless otherwise noted) 2022

Neurotransmitters

- Neurotransmitters, also known as chemical messengers, are endogenous chemicals that enable neurotransmission.
- They transmit signals across a chemical synapse, such as a neuromuscular junction, from one neuron (nerve cell) to another "target" neuron, muscle cell, or gland cell.

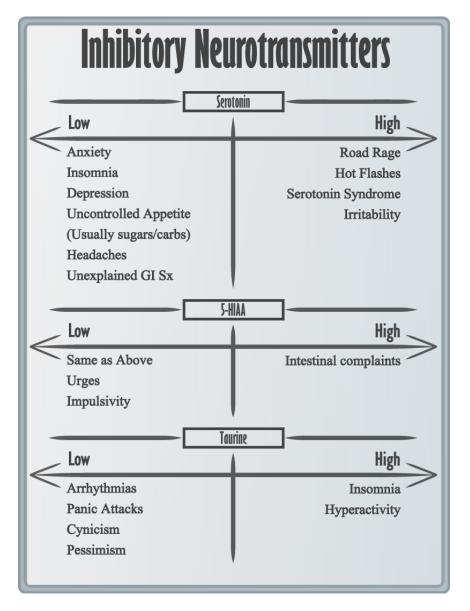


PICTUREQU VES. com


Excitatory vs. Inhibitory

(c) Dr Jess P Armine (unless otherwise noted) 2022

(c) Dr Jess P Armine (unless otherwise noted) 2022


Excitatory Neurotransmitters

Think of these as the substances that keep you awake and give you energy

(c) Dr Jess P Armine (unless otherwise noted) 2022

Slide © Jesse A. Armine 2017

Think of these as the substances that "calm" the nervous

(c) Dr Jess P Armine (unless otherwise noted) 2022

system

Slide © Jesse A. Armine 2017

Case Studies

(c) Dr Jess P Armine (unless otherwise noted) 2022

Case Study.....Alyssa

8 Year Old Female with visual distortions. Mom initially contacted presenter with the possible need for Irlen Glasses due to visual distortions.

Also c/o "bad gut". Pain upon eating gluten, soy or almost anything else.

After questioning, Hallucinations (Auditory, Olfactory & Visual) were identified.

Advised mom to obtain a standard work up for 2 basic reasons:

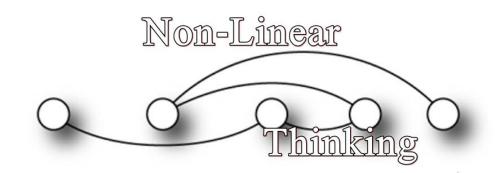
- Sometimes there are conditions that are easily corrected or are better treated by a different specialist. And...
- Olfactory hallucinations are secondary to a brain tumor, unless proven otherwise

Standard Medical Work Up

Standard work-up

- Brain CT
- ▶ MRI
- labs for thyroid, CBC, Complete Medical Profile, etc.
- Mom was instructed to return to me if the tests were negative for pathology or signs of obvious illness.
- In other words, if she was to be placed on antipsychotics, let me help.

Results:


- CT of the Brain-negative for pathology.
- MRI of the brain-negative for pathology
- Entire laboratory analysis within reference ranges(A.K.A.-Normal)
- The only treatment options offered were progressive use of psychotropic agents leading to atypical antipsychotic medications.
- Outlook: GUARDED No expectation of a normal life.

What Now? There are So Many Possibilities... We Need Direction

93

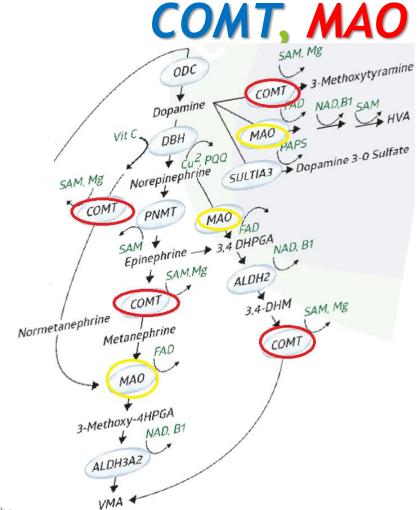
(c) Dr Jess P Armine (unless otherwise noted) 2022

Epigenetics Can Help Point The Way

Most effective use of genetic information

To raise your index of suspicion of pathophysiology in certain areas of your patient's physiology

If you know the pathways and there are a significant level of polymorphisms, then...


That pathway(s) <u>may</u> not function well under oxidative stress

(c) Dr Jess P Armine (unless otherwise noted) 2022

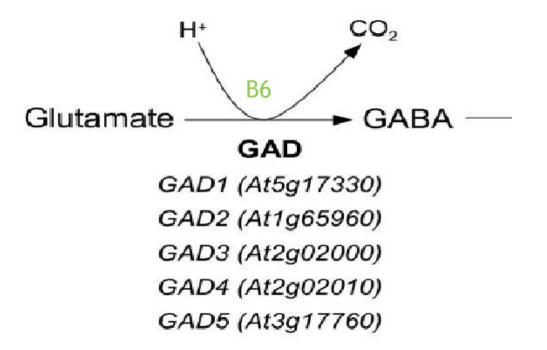
Say Ye..."But I have to learn all those genes and snps....there are a MILLION of them!"

Yea, yea so you say...but maybe we can focus our analysis (so we don't end up in paralysis, or worse)?

EXCITATION CAN CAUSE THESE SYMPTOMS, WHICH SNPS ARE IMPORTANT TO CONSIDER?

(c) Dr Jess P Armine (unless otherwise notea) 2022

COMT	<u>rs6269</u>	G	AA	-/-
COMT -61 P199P	<u>rs769224</u>	A	AG	+/-
COMT H62H	<u>rs4633</u>	Т	TT	+/+
MAO A R297R	<u>rs6323</u>	т	GT	+/-


SNPS slow down the metabolism (drainage) of catecholamines and eventually, they will "overflow"

Papaleo, Francesco et al. "Genetic Dissection of the Role of Catechol-O-Methyltransferase in Cognition and Stress Reactivity in Mice." The Journal of neuroscience : the official journal of the Society for Neuroscience 28.35 (2008): 8709-8723. PMC. Web. 30 July 2015.

Simpson, Eleanor H. et al. "Genetic Variation in COMT Activity Impacts Learning and Dopamine Release Capacity in the Striatum." Learning & Memory 21.4 (2014): 205-214. PMC. Web. 30 July 2015.

INCREASED GLUTAMATE CAN CAUSE EXCITATION What SNPs can cause that? GAD

GAD1	<u>rs2058725</u>	С	СС	+/+
GAD1	<u>rs3791851</u>	С	TT	-/-
GAD1	<u>rs3791850</u>	A	AA	+/+
GAD1	<u>rs12185692</u>	A	сс	-/-
GAD1	<u>rs3791878</u>	т	GG	-/-
GAD1	rs10432420	A	AA	+/+
GAD1	<u>rs3828275</u>	т	сс	-/-

Association between glutamic acid decarboxylase genes and anxiety disorders, major depression, and neuroticism. Mol Psychiatry. 2006 Aug;11(8):752-62. Epub 2006 May 23. Hettema JM1, An SS, Neale MC, Bukszar J, van den Oord EJ, Kendler KS, Chen X. 96 Association between glutamic acid decarboxylase genes and anxiety disorders, major depression, and neuroticism.

Mol Psychiatry. 2006 Aug;11(8):752-62. Epub 2006 May 23. Hettema JM¹, An SS, Neale MC, Bukszar J, van den Oord EJ, Kendler KS, Chen X.

Abstract

Abnormalities in the gamma-aminobutyric acid (GABA) neurotransmitter system have been noted in subjects with mood and anxiety disorders. Glutamic acid decarboxylase (GAD) enzymes synthesize GABA from glutamate, and, thus, are reasonable candidate susceptibility genes for these conditions. In this study, we examined the GAD1 and GAD2 genes for their association with genetic risk across a range of internalizing disorders. We used multivariate structural equation modeling to identify common genetic risk factors for major depression, generalized anxiety disorder, panic disorder, agoraphobia, social phobia and neuroticism (N) in a sample of 9270 adult subjects from the population-based Virginia Adult Twin Study of Psychiatric and

Substance Use Disorders. One mem which were tested for replication i tested in the GAD1 region demonst disorders.

selected as a case or control based Abnormalities in the gamma-aminobutyric acid from the analysis. The resulting sar (GABA) neurotransmitter system have been stage association study in which can noted in subjects with mood and anxiety

analysis in all 1128 subjects indicated that they formed a common mgn-risk naptotype that was significantly over-represented in cases (P=0.003) with effect size OR=1.23. Out of 14 GAD2 markers screened in stage 1, only one met the threshold criteria for follow-up in stage 2. This marker, plus three others that formed significant haplotype combinations in stage 1, did not replicate their association with the phenotype in stage 2. Subject to confirmation in an independent sample, our study suggests that variations in the GAD1 gene may contribute to individual differences in N and impact susceptibility across a range of anxiety disorders and

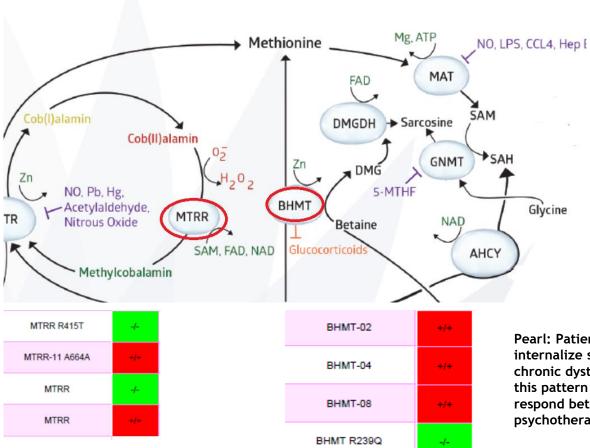
(c) Dr Jess P Armine (unless otherwise noted) 2022 major depression.

ROS, Aldehydes (Yeast)

SOD2	<u>rs2758331</u>	A	AC	+/-	
SOD2	rs2855262	т	СТ	+/-	
SOD2 A16V	<u>rs4880</u>	G	AG	+/-	
PON1 Q192R	<u>rs662</u>	С	СТ	+/-	

SOD suspect mitochondrial involvement. Involved in MCS

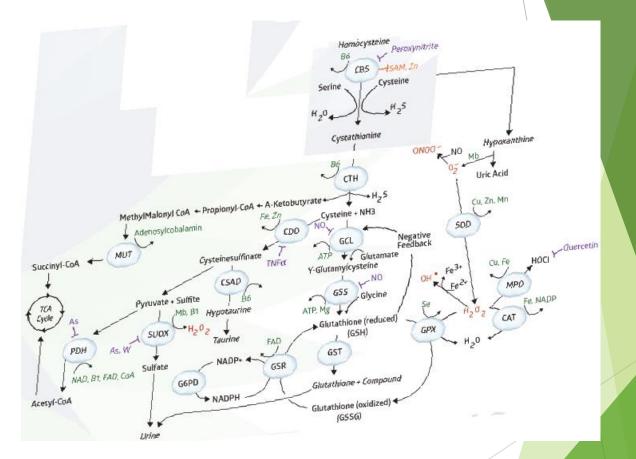
PON1 Organophosphates (Patient lives in a farming community)


Suspect difficulty in metabolizing aldehydes. Also involved in MCS

NAT2 A803G (K268R)	<u>rs1208</u>	G	AG	+/-	
NAT2 C190T (R64W)	<u>rs1805158</u>	т	сс	-/-	
NAT2 G590A (R197Q)	<u>rs1799930</u>	А	AG	+/-	
NAT2 G857A (G286E)	<u>rs1799931</u>	A	GG	-/-	
NAT2 T341C (I114T)	<u>rs1801280</u>	с	ст	+/-	

Cui, Xiaoyi et al. "Evaluation of Genetic Polymorphisms in Patients with Multiple Chemical Sensitivity." Ed. Aditya Bhushan Pant. PLoS ONE 8.8 (2013): e73708. PMC. Web. 30 July 2015.

(c) Dr Jess P Armine (unless otherwise noted) 2022


BHMT

Pearl: Patients like this will internalize stress and/or have chronic dysthymia. People with this pattern who have PTSD will respond better to EMDR than psychotherapy (talk therapy)

Obeid, Rima. "The Metabolic Burden of Methyl Donor Deficiency with Focus on the Betaine Homocysteine Methyltransferase Pathway." *Nutrients* 5.9 (2013): 3481-3495. *PMC*. Web. 30 July 2015,

TRANSSULFURATION

After questioning and review of labs, the transsulfuration pathway did not seem to express in this patient. When it does express you may see brain fog, high ammonia on lab tests and/or high taurine (c) Dr Jess P Armine (unless otion/NETnetesting.

CBS A13637G

CBS A360A

CBS C19150T

CBS C699T

CBS N212N

+/-

+/-

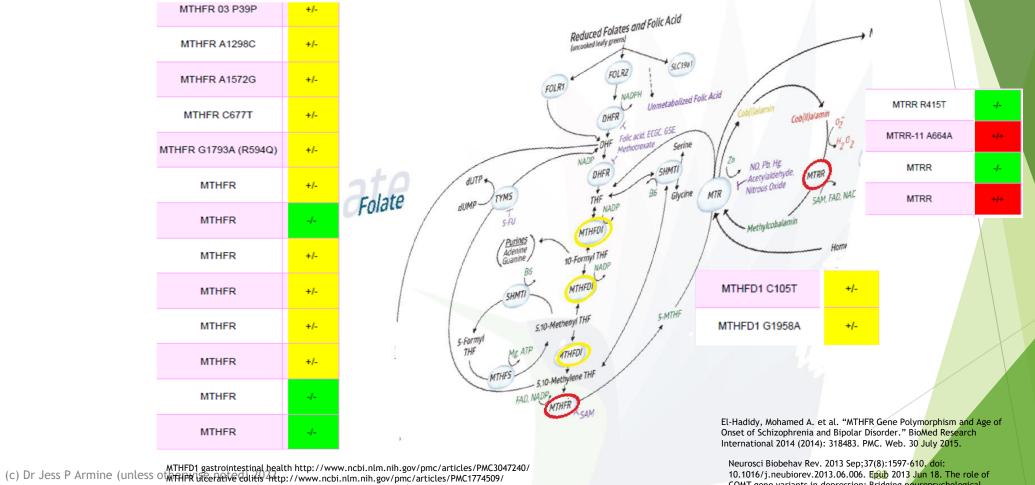
-/-

-/-

-/-

FUT2 & IGA

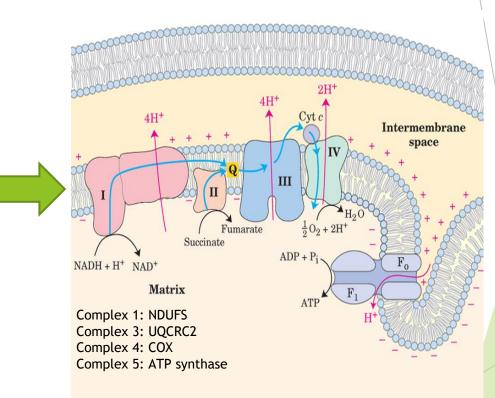
FUT2	<u>rs492602</u>	G	AG	+/-	
FUT2	<u>rs601338</u>	A	AG	+/-	
FUT2	<u>rs602662</u>	A	AG	+/-	


FUT2 has possible contribution to imbalances in the gut microbiome and B12

> Tendency toward food allergies especially with leaky gut syndrome

TRAF1 rs3761847 G AG +/-IRF5 rs4728142 Α AG +/-IGF1R rs2229765 Α GG -/rs1990760 С СТ +/-IFIH1 (HLA) HLA rs9271366 G AG +/-CFH rs6677604 Α GG -/-HLA-DQA2 rs9275224 Α AG +/-MTC03P1 rs9275596 С СТ +/rs9357155 PSMB8 / TAP1 / TAP2 GG Α -/rs1883414 GG -/-HLA-DPB2 / COL11A2P Α

IgA Snps


METHYLATION

COMT gene variants in depression: Bridging neuropsychological, behavioral and clinical phenotypes. Antypa N1, Drago A, Serretti A.

MITOCHONDRIAL COMPLEX 1-THE MOST IMPORTANT

NDUFS7	rs2332496	A	AG	+/-	
NDUFS7	rs7254913	G	AA	-/-	
NDUFS7	<u>rs1142530</u>	Т	Π	+/+	
NDUFS7	<u>rs7258846</u>	т	Π	+/+	
NDUFS7	<u>rs11666067</u>	A	AA	+/+	
NDUFS7	rs2074895	A	AA	+/+	
NDUFS7	rs809359	G	AA	-/-	
NDUFS8	rs4147776	С	AA	-/-	
NDUFS8	rs1122731	A	AG	+/-	
NDUFS8	rs999571	A	AG	+/-	
NDUFS8	rs2075626	С	СТ	+/-	
NDUFS8	rs3115546	G	TT	-/-	
NDUFS8	rs1104739	С	AC	+/-	
NDUFS8	rs1051806	т	СТ	+/-	

NADH-ubiquinone oxidoreductase (NDUFS) -GSSG will block the entry of the electron donors into the electron transport chain

(c) Dr Jess P Armine (unless otherwise noted) 2022

What is Expressing? Pointers to the Diagnoses

Complaint/ Symptoms	Snps	Index of Suspicion high for these root causes	Downstream effects	Questions to ask	Testing
Hallucinations (excitation)	COMT, MAO, MTHFD1, GAD, MTHFR, MTRR, MTR	Immune issues, microbial involvement	Neurotransmitter Imbalance	Voices "chattering" or screaming (intrusive thoughts)	NT test, Tests for: Lyme, Co-infections, Viruses, parasite, Candida, etc.
"Bad Gut"	IgE, IgA, IgG DAO, HNMT, HDC. HRH, FUT2	Leaky Gut Syndrome	Immune Upregulation, Immune dysregulation, Dysautonomia, Histamine Intolerance	Relationship of symptoms to to food intake, color/frequency of BM,	Food Allergy Tests, Organic Acid Test, Cross Reactivity Testing
Bad Gut	NAT/ALDH (aldehyde metabolism)	Yeast (acetyl-aldehydes)	Neural upregulation, adrenal fatigue,	How does patient react to ETOH intake? Coated tongue?	Stool, Antibody Testing, B5 level
Mitochondrial Dysfunction	NDUFS, COX, UQCRC2, ATP	GSSG, Oxidative stress	Fatigue, lack of healing ability	Ask about fatigue, lack of ability to heal,	ATP, ADP conversation, GSSG, reduced GSH, anti oxidant testing (SOD), Thyroid panel
Methylation	MTHFD1, MTHFR, MTRR, MTR	All of the Above	General lack of ability to heal	(too broad, many symptoms)	Organic Acid Testing, cellular micronutrient analysis

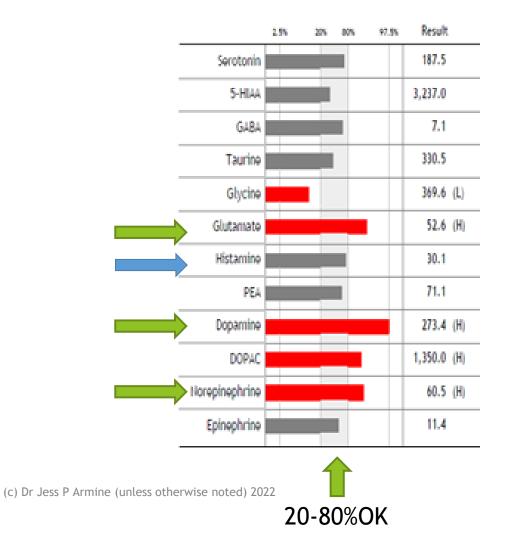
Alyssa's SNPs Indicated Probable Issues in the Following Areas...

Areas/pathways

- Neurotransmitters
- Leaky Gut Syndrome
- Aldehyde Metabolism
- Methylation
- Mitochondrial function

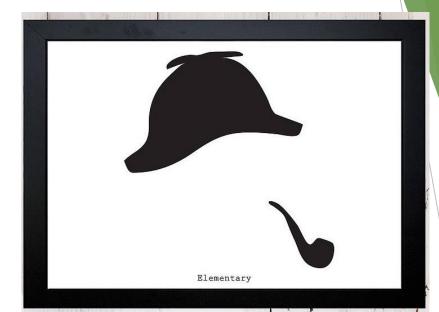
How do we use this information?

- Correlate, correlate, correlate! Or, if all the dogs are barking up a tree, don't yell at the dogs...look up the tree!
- Use the estimated function of the enzymes (snps) and compare them to:
 - Symptoms
 - Personal/family Hx
 - Clinical observations
- Use the estimated function of the enzymes (snps) to:
 - Raise index of suspicion of root cause(s)
 - Help identify downstream effects
 - Determine which tests will solidify diagnoses
 - Ultimately, assist you in creating an individualized, successful treatment plan


DIAGNOSIS

•the process of determining by examination the nature and circumstances of a diseased condition.

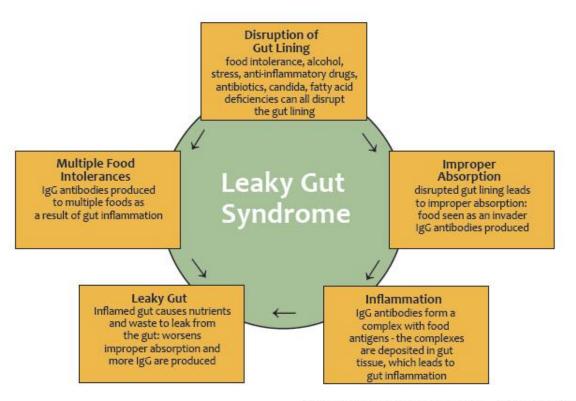
•the decision reached from such an examination.


•AKA: A Search for the ROOT CAUSE(S)

Alyssa's NTs...Where is she?

Inhibitory/Excitatory Balance

- Visually compare the rough levels of inhibitory NT's (Serotonin, GABA, Taurine, Glycine) with the excitatory NT's (Glutamate, Histamine, PEA, Dopamine, Norepi, Epi)
- The excitatory NT's "outweigh" the inhibitory NT's
- **The "Net Result" is an excited nervous system.**
- Hallucinations
 - Always from over excitation
 - Classically, high dopamine causes hallucinations (but not always)
 - Glutamate, Histamine, PEA, Dopamine, Norepi, Epi can all cause "excitotoxicity" or perhaps it's the combination
 - Adrenal Fatigue
 - Give indicator of how long her root causes have been present


Who is Upregulating The Nervous System

We Need To Elucidate

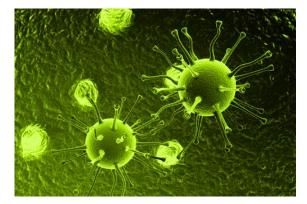
(c) Dr Jess P Armine (unless otherwise noted) 2022

Leaky Gut Syndrome

Hints: "bad gut" on history; IgA/IgG/IgE, SHMT, FUT2 SNPS; Food Allergy Testing

Source: http://allergytreatmentservices.com/digestion.html

Net Result...INFLAMMATION

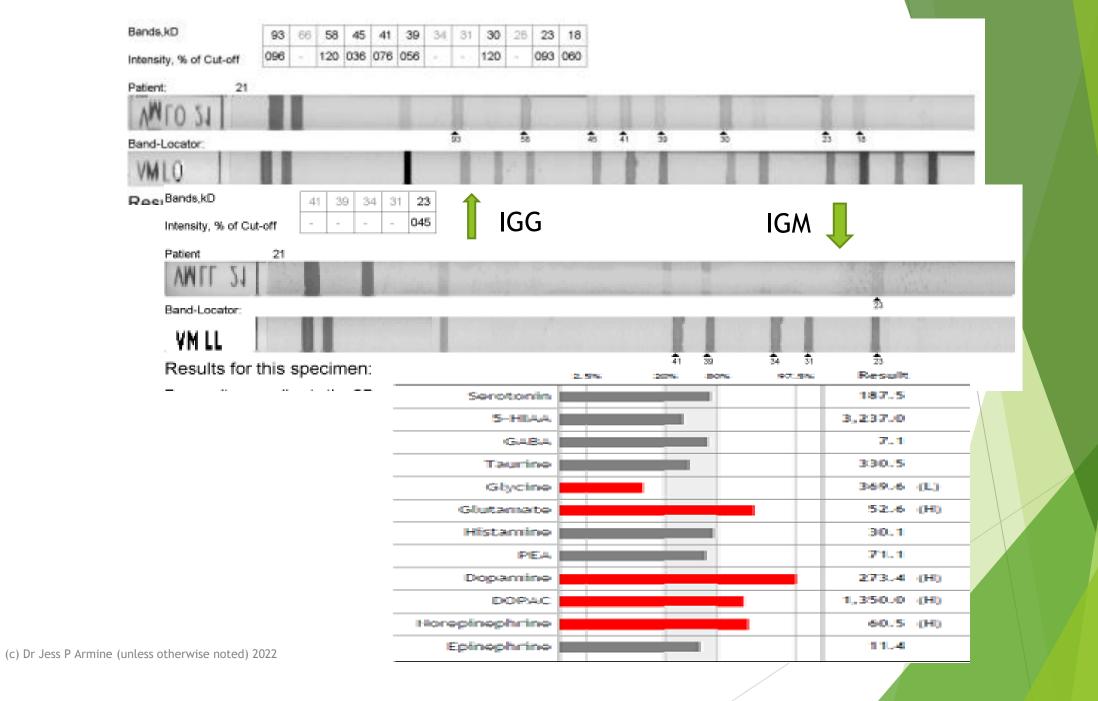

Candida OverGrowth Symptoms

AUXIETY	
HeadAches-Migraines	
VAGINITIS	
EXCESSIVE FATIGUE	1
ACNE	
DIZZILLESS	đ
Athlete's Foot	C
low sex drive	l

ITCHING **ALCOHOL CRAVINGS** Inability to Concentrate **HyperActivity** MOOD SWANDS Sinus Inflammation Poor Memory Cognitive Impairment learning difficulties

ECZEMA DEPRESSION PMS **PERSISTENT COUGH** chronic pain **Irritability** muscle weakness

Microbial Involvement



(c) Dr Jess P Armine (unless otherwise noted) 2022

Hint: COMT, MAO, GAD, WITH clinical signs of neural excitation....always consider multiple bugs

110

Lyme Disease: Adult Symptoms

Close Window

Fast Facts

- Lyme is fastest growing vector-borne disease
- 85% do not recall tick bite
- Less than 70% of people develop a rash
- Treatment should begin without testing if rash is present
- Lab tests may be negative in the first 4-6 weeks

Early symptoms

- Flu-like illness (fever, chills, sweats, muscles aches, fatigue, nausea and joint pain)
- Rash (10% have EM rash)
- Bell's palsy

CHILDREN'S SYMPTOMS

Later Symptoms

Headache

- Stiff neck
- Light or sound sensitivity
- Cognitive impairment
- Sleep disturbance
- Depression, anxiety, or mood swings
- Arthritis
- Fatigue
- Abdominal pain, nausea, diarrhea
- Chest pain, palpitations
- Shortness of breath
- Tingling, burning or shooting pains

Alyssa's Labs and Dx

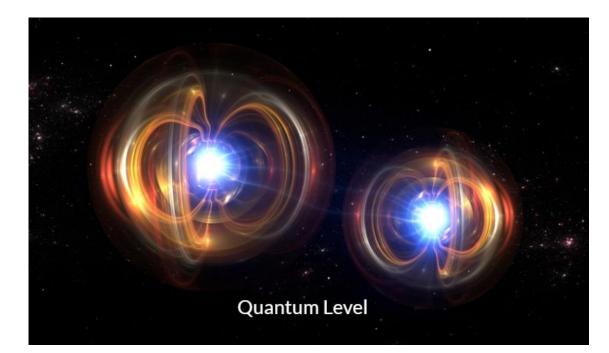
Lab

- Alyssa was extensively tested and found to have antibodies to Yeast and HHV6.
- A Western Blot for Lyme was positive in my opinion.
- Numerous food allergies by IgG testing.
 - Concentrations were in Gluten, Dairy and Yeast areas.

Working Diagnoses

- Lyme Disease (neural) leading to neural upregulation
- Yeast overgrowth (gut) releasing acetaldehydes (neurological irritant)
- Leaky Gut Syndrome (food allergies, immune upregulation)
- Viral Syndrome (neural dysregulation)

CHECKPOINT: Root Cause vs. Downstream Effect... Ask Yourself...


- Leaky Gut Syndrome can and does lead to immune upregulation/dysregulation. This is evidenced by the numerous food allergies and the patient's GI symptoms.
 - Can this cause the increase in catecholamines and hallucinations?
- Lyme and HHV6 attack the neural cells.
 - Can this cause the increase in catecholamines and hallucinations?
- Yeast overgrowth causes increased levels of acetylaldehyde. Combined with the NAT2 snps.
 - Can this cause neural inflammation resulting in hallucinations?
- Answer: Yes to all of the above.

What To Do? When to Do it? Keep It "Foundational"

"Reduce Stress, Heal the Cells, Heal the Gut, Kill the Bugs!!"

(c) Dr Jess P Armine (unless otherwise noted) 2022

You May Understand Physiology Down to the Quantum Level But You Can Only Intervene at the Global Level

Into This

TREAT ROOT CAUSES AND DOWNSTREAM EFFECTS

TREATMENT (LESSEN THE TRAFFIC)

Treatment Step 1: Cellular & GI Repair

Principles:

- We need to fully digest foods. Undigested foods make up the majority of the antigens that enter our bodies.
- We need to re-create the mucus layer in the gut. The mucus layer is where the microbiome live, what they eat, and where they do their work. The mucus layer traps antigens, toxins, xenobiotics and forms the initial layer of protection.
- We need to repair the cells and the tight junctions. This area is our second layer of defense preventing the entry of the above mentioned into our bodies.
- We need to re-populate the GI tract with an adequate diversity of biota.

- Demulcent herbs to recreate the mucus layer*
- Phospholipids to support cellular repair
- Digestive enzymes to assure full breakdown of foods and prevent creation of antigens.
- DAO enzyme to help break down histamine
- Probiotics (soil based with S. Boulardii)
- Absorbable Vitamins and Minerals

Treatment Step 2: Kill the Bugs The Quintessential Devils in this Matter

- Child was co treated by myself and an integrative pediatrician
- GI Repair program was conducted for a period of 3 months
- Thereafter, we went after the bugs. There was some disagreement as to the form of treatment (whether to insert a PICC line and use rotating antibiotics or use other available non-pharmaceutical options)

The parents were given full information, pros, cons, etc. by the pediatrician and myself

The parents chose the latter.

Treatment Step 3: Retest

- Three months after biocidal treatment was initiated, testing was done again at the same lab.
- All results were negative
- All symptoms were gone

The Sleuthing Was Worth It!

Alyssa is now in College

18 years old She's an Honor Student, Star Athlete, and a beautiful young woman.

8 y/o

Reality:

Hallucinations were a expression of genetic predisposition caused by neural excitation and immune upregulation secondary to infections and leaky gut syndrome. All "kept going" by chronic CDR.

16 y/o

Prospect:

A life on antipsychotic meds

12y/o

Result: A life saved

121

(c) Dr Jess P Armine (unless otherwise noted) 2022

(c) Dr Jess P Armine (unless otherwise noted) 2022

Chelsi

Story of Hope

Started with Febrile Seizures at 10 months old

1994

4 seizures in 3 years. Normal birth. First seizure at 10 months old during high fever. Maybe 4 more seizures throughout the next 3 years, but only during high fever.

1997

A Few absence. In August, started with freezing type seizures where she would bend her arms up, turn her head and eyes to the right and gently, rhythmically quiver for 3 to 10 seconds with head and eyes to the right. Only happens when she's playing, and if she playing hard enough to get breathless, they would last longer (up to a minute) and she would collapse after.
 Started on Zarontin – didn't do much (started absence seizures)
 Depakote added – seizure free for 2 months, weaned off Zarontin. As soon as she was

- on a lower dose, myoclonic jerks started

1998

2 febrile/lots of myoclonic. MRI at Childrens 5/98 diagnosed myoclonic with other generalized activity.

- Depakote level 138, weaned to introduce Lamictal
- Started Lamictal 25mg, 1/2 tab bid
- 2-3 weeks later, 2 tonic clonic seizures 15 minutes apart (July) Became severely ataxic and ended up in Children's for 4 days.
 - Thrombocytopenia Platelet count in the 60's, got a rash, Depakote decreased, Lamictal discontinued

Video EEG 5/28 & 5/29 Generalized slowing and myoclonic seizures. Tendency for

generalized atypical SW discharges to the rt hemisphere.

1999

No Seizures.

- Depakote 250mg AM, 125mg PM, Zarontin 250mg Had been seizure free for several months.
- Was under care of Marcio Sotero, started seeing Dr. Graf locally through Childrens 10/99
- Seizure free for over 1 year. Drugs decreased because of sleepiness/cognitive difficulties.

- 2006
- 9 tonic clonic seizures

- Seizures 12/26, 10/9, 9/22, 8/1, 8/10, 7/20, 4/9, 3/14, 2/28, (nothing 10 months prior)
 First seizure EVER not related to HEAT...and continued to have them for no reason.
- Seizures more convulsive
- 6/20 Increased **Zonegran** to 175 in the evening, **Keppra** 750 BID.
- March is when the frequency really picked up and seizures were unpredictable and harder.
- Started mensus for the first time October 6, 2006
- Zonegran 125 in eve and Keppra 1000 bid. Drugs switched in hopes of less absence, but result was more grand mal.
- MRI at Childrens 8/25 normal

Number and type of seizures increased through the years

- 2010
- 47 tonic clonic seizures
- **Zonegran** 300 mg /day (tried to stop...it didn't go well-seizures increased and came at odd times)
- Keppra 1750 bid
- **Clobezam** down to 7.5 mg/day
- 2011
- 74 tonic clonic seizures

Video EEG done at Harborview Epilepsy Center. Confirmed generalized seizures.

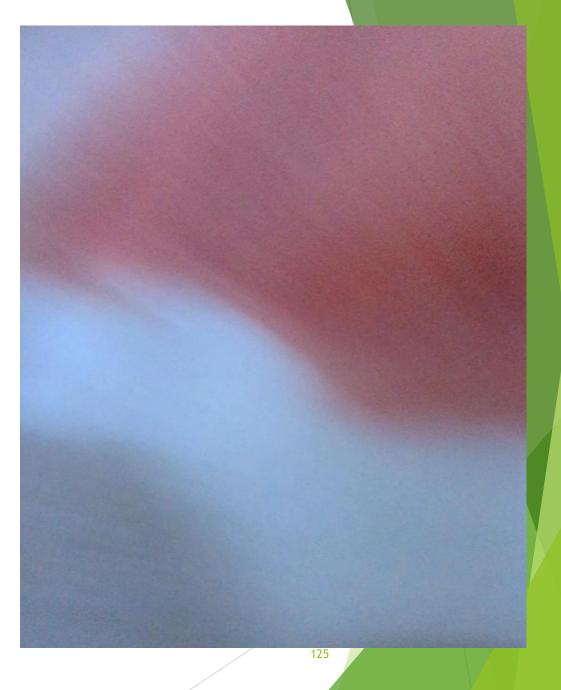
NutrEval 10/11 – NOTE still low on alanine, lysine, glycine, senine (see 2005 Swedish tests)
 Hair sent to Doctor's Data for Toxic testing: High in

Uranium, Copper, Cobalt, Lead

Blood tests showed Chloride High, Alkaline Phosphatase low

- **DNA** tested for C677T and A1298C mutations (negative)
- **FOOD** allergy tested 10/11 High antibodies for Cheese, Milk, Whey, beef, lamb, pork
- Zonegran 200 mg bid
- Keppra 1000 bid
- **Clobezam** 12.50.
- **Banzel** ? mg Started falling forward. Many daytime seizures and injuries and stitches. Weaned off between February & July

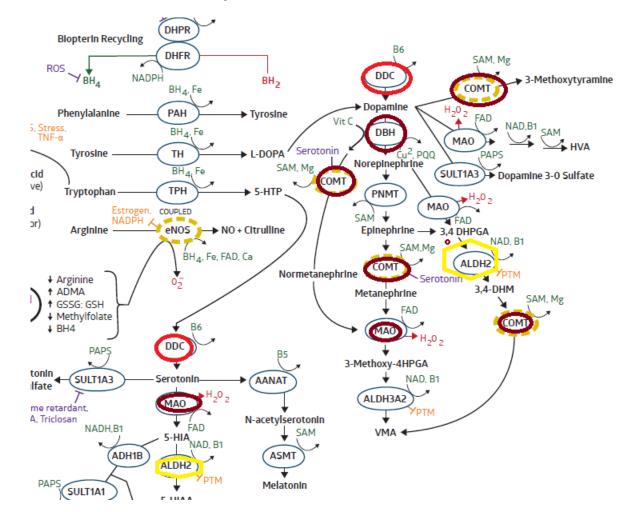
- 2012
- **101 tonic clonic seizures (probably 10% just tonic)**

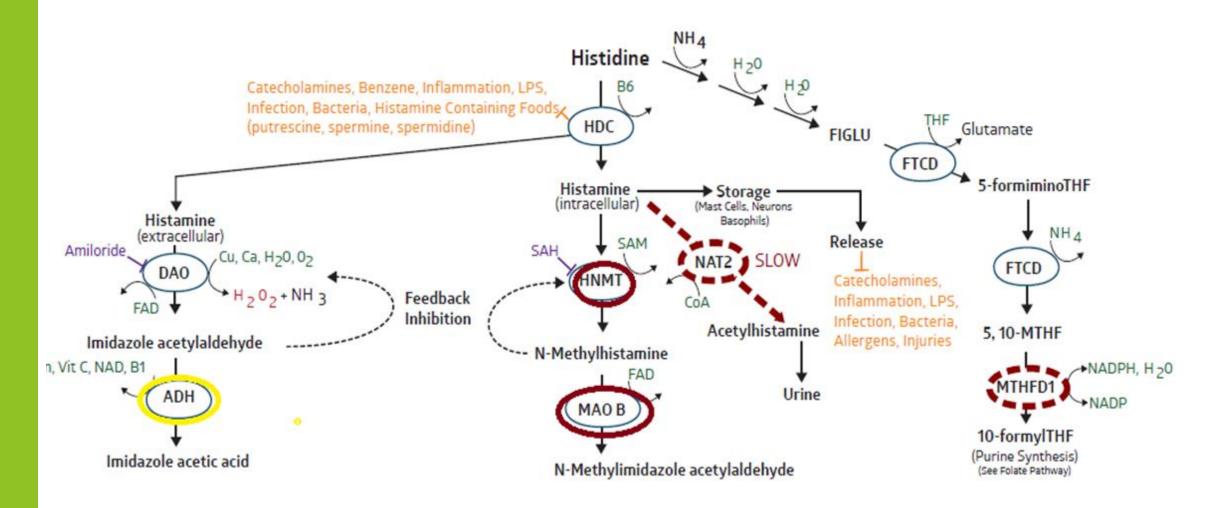

▶ NutrEval 10/12 – NOTE still low on alanine, lysine, glycine, senine (see 2005 Swedish tests)

Jan to June, 90% of seizures between 2pm&6pm. Many injuries and stitches.

Medical Marijuanna tried 6/26/12 to 12/12. Switched seizures to her sleep (perhaps because she was getting sugar in the brownies?), but frequency increased. Seizures would start at 9:38pm and sometimes had 2 or 3 per night.

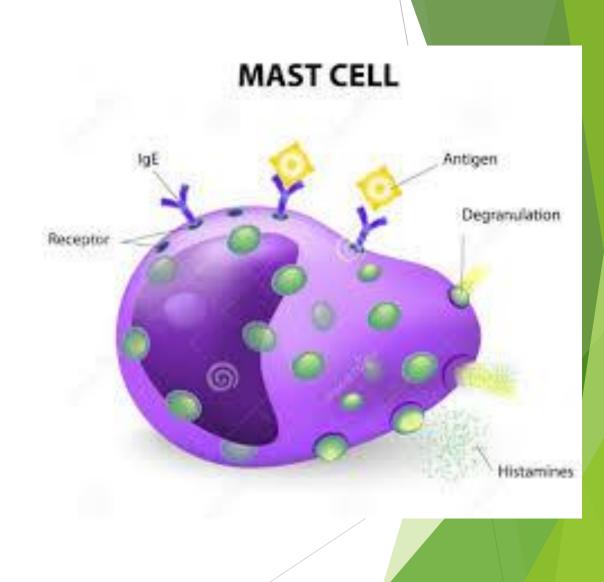
- Zonegran 200 mg bid
- Keppra 1000 bid
- Clobezam 10 mg bid
- Vimpat (Lacosamide) 125mg /day (I believe this is why they switched to daytime)
- 2013
- 146 tonic clonic seizures
- **I BELIEVE INCREASES FOR THE LAST 3 YEARS** WERE FROM BANZEL, VIMPAT & RUFINIMIDE. Depakote added back in because Dr. Miller saw this history and thought it was worth going back. I disagree.


What she fought. Tonic Clonic seizures


One year report for Date created: Mar Start Month: April End Month: March Weight: 106 lbs. (a Birth date: March Current Medicatio	ch 17, 20 2019 1 2020 as of June 11, 1994 ns: Depa Kepp	20 e 12, kote ra 12	2015)	Daily				
⊕ April, 20				May, 2019			June,	2019
Week 1	19	4	Week 1	May, 2019		5	Week 1	2019
Week 2		5	Week 2			4	Week 2	
Week 3		3	Week 3			4	Week 3	
Week 4		5	Week 4			3	Week 4	
	Total:	17		1	Fotal:	16		Total:
Luke 00	40			A	2		Orataal	
July, 20	19			August, 2019	9		Septemb	er, 2019
Week 1		3	Week 1			5	Week 1	
Week 2		3	Week 2			4	Week 2	
Week 3		2	Week 3			4	Week 3	
Week 4		4	Week 4			5	Week 4	
	Total:	12		1	Fotal:	18		Total:
October, 2	2019		N	November, 20	19		Decemb	er, 2019
Week 1		4	Week 1			6	Week 1	
Week 2		4	Week 2			6	Week 2	
Week 3		3	Week 3			3	Week 3	
Week 4		9	Week 4			7	Week 4	
	Total:	20		I	Fotal:	22		Total:
January, 2	2020			February, 202	20		March	2020
Week 1	-020	3	Week 1	1 CDrudiy, 202		15	Week 1	, 2020
Week 2		4	Week 2			4	Week 2	
Week 3		7	Week 3			4	Week 3	
Week 4		9	Week 4			5	Week 4	
	Total:	23		٦	Fotal:	28		25
								ZJ

Number of monthly seizures steadily increased from 4/2019 through 3/2020

Genetic Predisposition toward Excitation

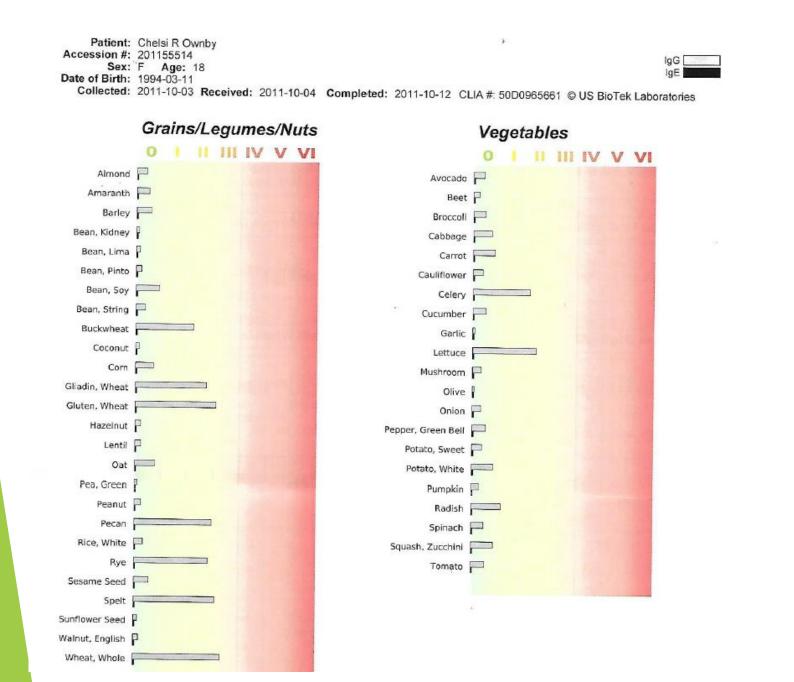


Predisposition to High Histamine

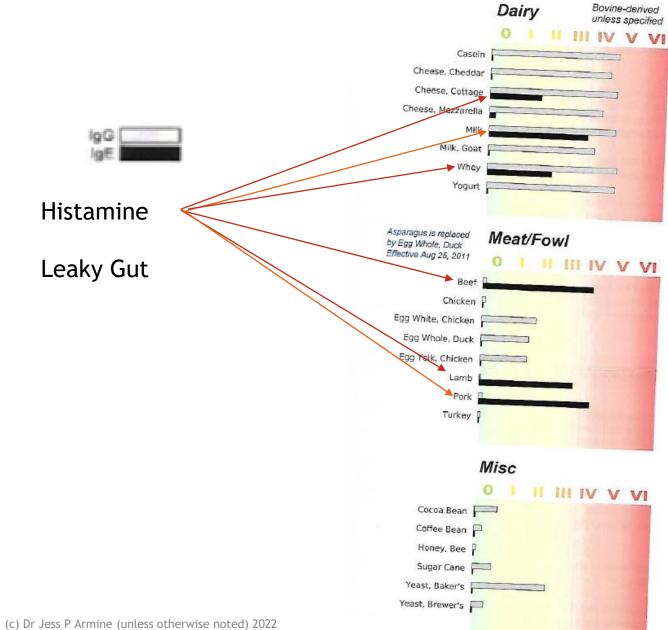
Histamine: The Major Offender

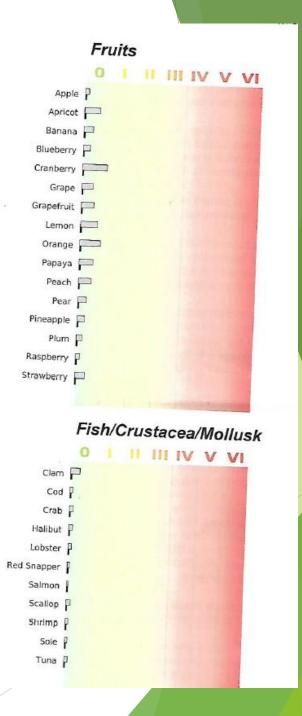
- Histamine is most commonly known for it's role in allergic reactions
- Also involved in neurotransmission and can affect your emotions and behavior as well.
- Histamine helps control the sleep-wake cycle and promotes the release of epinephrine and norepinephrine.
- High histamine levels have been linked to obsessive compulsive tendencies, depression, and headaches.
- Low histamine levels can contribute to paranoia, low libido, fatigue, and medication sensitivities.

Toxic & Essential Elements; Hair


		TOXIC	METALS			
		RESULT µg/g	REFERENCE	68 th 95 th		
Aluminum	(AI)	3.4	< 8.0			
Antimony	(Sb)	< 0.01	< 0.066			
Arsenic	(As)	0.036	< 0.060			
Barium	(Ba)	0.93	< 1.5			
Beryllium	(Be)	< 0.01	< 0.020			
Bismuth	(Bi)	0.17	< 2.0			
Cadmium	(Cd)	0.019	< 0.060			
Lead	P (Pb)	0.80	< 0.60			
Mercury	(Hg)	0.11	< 0.40			
Platinum	(Pt)	<0.003	' < 0.005	_		
Thallium	(TI)	< 0.001	< 0.002			
Thorium	(Th)	< 0.001	< 0.002			
Uranium	• (U)	1.0	< 0.060			
Nickel	(Ni)	0.38	< 0.30			
Silver	(Ag)	0.13	< 0.18			
Tin	(Sn)	0.32	< 0.30			
Titanium	(Ti)	0.53	< 0.60			
Total Toxic Represent	tation		Community of the local diversion of the local			

Hair Analysis: 6-week overview of what the body is EXCRETING.


Serum: Recent RBC: approximately 3 months WBC: approximately 6 months


South States of the second second		ESSENTIAL AND	OTHER ELEMENTS	a state of the second s
		RESULT µg/g	REFERENCE	PERCENTILE 2.5 th 16 th 50 th 84 th 97.5 th
Calcium	(Ca)	1050	350- 1000	
Magnesium	(Mg)	240	35- 120	
Sodium	(Na)	390	18- 180	
Potassium	(K)	16	8- 75	-
Copper	(Cu)	170	11- 37	
Zinc	(Zn)	190	150- 230	•
Manganese	(Mn)	0.47	0.08- 0.60	
Chromium	(Cr)	0.44	0.40- 0.65	
Vanadium	(V)	0.13	0.020- 0.075	
Molybdenum	(Mo)	0.032	0.025- 0.060	
Boron	(B)	0.61	0.20- 1.2	
lodine	(1)	0.66	0.25- 1.3	
Lithium	(Li)	0.013	0.007- 0.020	
Phosphorus	(P)	165	150- 220	
Selenium	(Se)	0.61	0.70- 1.1	
Strontium	(Sr)	2.4	0.86- 6.2	•
Sulfur	(S)	44900	44000- 50000	-
Cobalt	(Co)	0.23	0.005- 0.040	
Iron	(Fe)	8.1	7.0- 16	
Germanium	(Ge)	0.035	0.031- 0.040	•
Rubidium	(Rb)	0.018	0.006- 0.060	•
Zirconium	(Zr)	0.57	0.025- 0.50	

(c) Dr Jess P Armine (unless otherwise noted) 2022

Leaky Gut!

Review > Nat Rev Microbiol. 2008 Jul;6(7):541-52. doi: 10.1038/nrmicro1930.

Viral infection and iron metabolism

Hal Drakesmith ¹, Andrew Prentice

Affiliations + expand PMID: 18552864 DOI: 10.1038/nrmicro1930

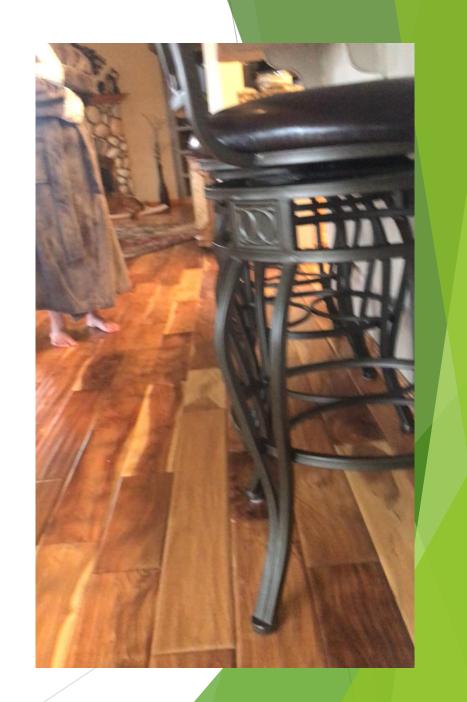
Abstract

Fundamental cellular operations, including DNA synthesis and the generation of ATP, require iron. Viruses hijack cells in order to replicate, and efficient replication needs an iron-replete host. Some viruses selectively infect iron-acquiring cells by binding to transferrin receptor 1 during cell entry. Other viruses alter the expression of proteins involved in iron homeostasis, such as HFE and hepcidin.

In HIV-1 and hepatitis C virus infections, iron overload is associated with partly caused by the viruses them interact might suggest new m poor prognosis and could be

iron overload is associated with poor prognosis and could be partly caused by the viruses themselves.

Drakesmith H, Prentice A. Viral infection and iron metabolism. Nat Rev Microbiol. 2008 Jul;6(7):541-52. doi: 10.1038/nrmicro1930. PMID: 18552864.


2019

2019

201 tonic clonic seizures

Wandering around after seizure got much worse. Seizures coming later & later.

► Frankincense & Copaiba essential oils tried in February. Had a situation where extra Frankincense was used and had involuntary "dancing" movementsshe couldn't stop and was in distress (have video). Discontinued. Seizures started getting later (1am & 2am) and sometimes having 2 or 4 per night. 1st fall in over 2 years. Awake – standing on wood floor and went backward. Bizarre episode where she saw her belly in the mirror and had her 1st ever total freak out. Seizures started at ANY time of the night/morning 2:30am to 8:30am. Unprecedented! Things spun out of control this year, especially Oct to Dec. We have not been able to regain any normalcy (9:30 to 11pm) in seizures, even though we are back on doses of all 3 drugs same as 2015 . Looking into EMF's and Wifi (#Steelesarmy) and Dr. Jess Armine.

February, 2	2020		March, 2020			April, 2020	
Week 1		9	Week 1	6	Week 1		7
Veek 2		4	Week 2	8	Week 2		3
Veek 3		4	Week 3	7	Week 3		6
Week 4		5	Week 4	4	Week 4		5
	Total:	22	Tota	l: 25		Total:	21
May, 202	20		June, 2020			July, 2020	
Veek 1		6	Week 1	6	Week 1		0
Veek 2		5	Week 2	4	Week 2		1
Veek 3		6	Week 3	6	Week 3		5
Veek 4		10	Week 4	10	Week 4		7
	Total:	27	Tota	l: 26		Total:	13
August, 2	020		September, 2020			October, 2020	
Week 1		6	Week 1	4	Week 1		3
Marali O		19	Week 2	5	Week 2		4
Neek 2							
Veek 2 Veek 3		5	Week 3	8	Week 3		3
		8		8 8	Week 3 Week 4		3
Veek 3	Total:		Week 3	8 8		Total:	
Veek 3		8	Week 3 Week 4	8 8		Total: January, 2021	3
Neek 3 Neek 4		8	Week 3 Week 4 Tota	8 8			3
Neek 3 Neek 4 November,		8	Week 3 Week 4 Tota December, 2020	8 8	Week 4		3
Neek 3 Neek 4 November, Neek 1		8	Week 3 Week 4 Tota December, 2020 Week 1	8 8	Week 4 Week 1		3
Week 3 Week 4 November, Week 1 Week 2		8	Week 3 Week 4 Tota December, 2020 Week 1 Week 2	8 8 1: 25 1 1 1 2	Week 4 Week 1 Week 2		3

Feb 2020 to Feb 2021

FMP treatment started January 2020

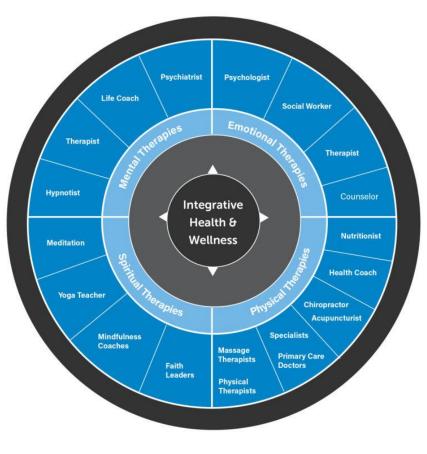
- Foundational treatment consisting of liposomal vitamins and minerals.
- Treatment for leaky gut syndrome.
- Mitochondrial support.
- Cell membrane support

This patient progressed very slowly. The hundreds (maybe thousands) of seizures did significant damage to her central nervous system. There was no single root cause that we could identify so we concentrated on optimizing her cell function, biochemical pathways, and balancing her neurotransmitters.

It worked!

Playing Cards 2021

- Chelsi is 27 years old and continues to progress albeit slowly.
- I want to give a shout out to her parents (and dog). They are the finest, most dedicated people I've had the pleasure of working with in my career.

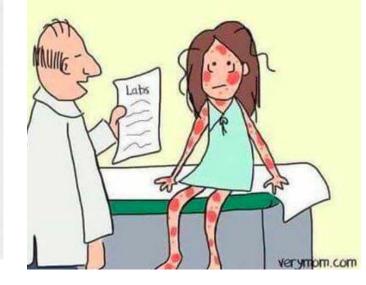

Late 2021

If we think differently and Work TOGETHER

...we can change lives!!

Tips on Picking out a Practitioner

(c) Dr Jess P Armine (unless otherwise noted) 2022


"Listen to your patient, he is telling you the diagnosis"

Sir William Osler, Bt Founder Father of Johns Hopkins Medical Center^{*} ^{*}Tuteur, Amy (November 19, 2008). <u>"Listen to your patient"</u>. The Skeptical OB. Retrieved April 9, 2012.

REMEMBER, In Real Estate, It's "Location, Location, Location." In Health Care it's, "History, History, History!"

Words: ISDOM

Good news! Your lab results look great. Everything is normal; you are the picture of health.

Treats the Patient... NOT the Test

(c) Dr Jess P Armine (unless otherwise noted) 2022

You can't do this alone....TIPS on How to pick a practitioner

- Certifications beyond their original degree / license
- An eclectic knowledge base so you are afforded true holistic care
- They're focused on finding root causes, the downstream effects, and creating an individualized manner of treating <u>YOU!</u> Not "your condition".
- They use lab tests appropriately and know how to <u>Interpret</u> (not just read) them. But most of all...
- <u>They will take time to listen and explain</u>

Interview the practitioner before committing yourself to their care.

Assure yourself that he/she is as committed to your healing as you are and will take⁴⁴the time and effort to return you to life.

Chronic Illnesses Take a Long Time to Heal.

- ► The magic pill does not exist.
- Working with a practitioner, embracing the healing process, and participating in your recovery and you WILL HEAL!!!

Resources

- Nutritionist (ldnresearchtrust.org)
- Leaky Gut, Leaky Cells, Leaky Brain: Where to go when all hope is lost!: Armine, Jess, Lambert, Elizma: 9798747272231: Amazon.com: Books
- USA: <u>Rupa Health | A simpler way to order specialty labwork.</u>
- UK/EU: <u>https://functionaldx.com</u>, <u>Welcome to Biolab Medical Unit London</u> <u>UK</u>, <u>Regenerus Labs</u>

ジェス・アーミン博士

Evidenced Based References

<u>Butyrate:</u> are important as food for cells lining the mammalian <u>colon</u> (colonocytes). Without butyrates for energy, colon cells undergo <u>autophagy</u> (self digestion) and die.[[]

https://www.ncbi.nlm.nih.gov/pubmed/2734 6602

https://www.ncbi.nlm.nih.gov/pubmed/2587 5123

<u>Honey</u>: Today, honey has been scientifically proven for its antioxidant, regulation of glycemic response, antitumor, antimicrobial, antiinflammatory, and cardiovascular potentiating agent. It can be used as a wound dressing and healing substance.

https://www.ncbi.nlm.nih.gov/pubmed/2910 1693

<u>Zinc Carnosine:</u> Involved in the reversal of neurodegenerative diseases, gastrointestinal conditions, antioxidant, metal chelating, anticrosslinking, and anti-glycation activities

https://www.ncbi.nlm.nih.gov/pubmed/2938 2141

https://www.ncbi.nlm.nih.gov/pubmed/2424 7360

https://www.ncbi.nlm.nih.gov/pubmed/2584 6004

<u>Sialic acid</u> are cytoprotectors, mainly localized on the surface of cell membranes with multiple and outstanding cell biological functions. Provides mucin for the GI tract.

> https://www.ncbi.nlm.nih.gov/pubmed/3050 9400

NEI:

https://www.neurorelief.com/index.p p=cms&cid=108&pid=85&type=1

Brain Basics:

http://www.nimh.nih.gov/health/educati onal-resources/brain-basics/brainbasics.shtml

- The Brain from Top to Bottom: <u>http://thebrain.mcgill.ca/flash/i/i_01/i_</u> 01_m/i_01_m_ana/i_01_m_ana.html
- Neurotransmitters, An Introduction: <u>http://mybrainnotes.com/serotonin-</u> <u>dopamine-epinephrine.html</u>
- Epigenetics of depression. Lolak S, Suwannarat P, Lipsky RH. Prog Mol Biol Transl Sci. 2014;128:103-37. doi: 10.1016/B978-0-12-800977-2.00005-X. PMID: 25410543

- Cell Membrane Rap: <u>Cell</u> <u>Membranes Rap - YouTube</u>
- The Cell Song: <u>The Cell Song</u> <u>YouTube</u>
- Mitochondria Song: <u>Electron</u> <u>Transport Chain (Music Video)</u> <u>- YouTube</u>
- Enzymes Enzymes: Mr. W's Enzyme Song - YouTube
- Sciencemusicvideos.com

Learning doesn't have to be difficult

📼 The Best AP Bio Exam Review 🛛 🛇 📫 🚥

Dr Jess P. Armine

www.drjessarmine.com

office@drjessarmine.com

+1 267 881 8230

Dr Jess treats patients and mentors practitioners worldwide.

Dr Jess offers prospective patients a complimentary 30 min "get acquainted" session.

