Low Dose Naltrexone in Treatment of Obesity and Weight Loss

by Andrey Lev-Weissberg, MD FACP Professor of Medicine University of Illinois College of Medicine

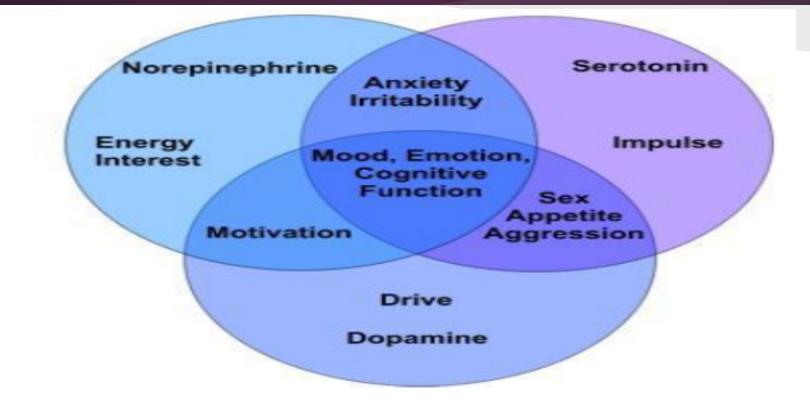
OBJECTIVES

- LDN success story as immunomodulator
- Learning from clinical practice with the use of low-toxicity pharmaceuticals that have wide range of applications
- Discuss neurobiologic significance of endorphins in homeostasis of weight

Discuss metabolic syndrome as proinflammatory state

- Discuss possible application of LDN in management of obesity from above two perspectives
- Provide a practical approach to using LDN using clinical vignettes

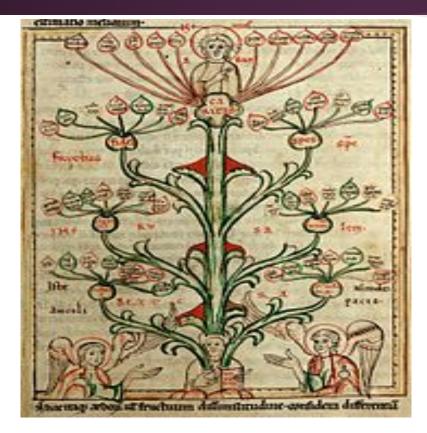
BASIC TENETS OF LDN:


- LDN increases natural endorphins from pituitary
- Likely increases dopamine
- Interaction between endorphins and dopamine is complex.
- It is likely that LDN modulates natural activity and produces "healthy" levels
- Low-Dose effect can have a "tonic" influence
- Cellular effects are produced by dopamine and endorphins

LDN and sleep

"usual doses" of naltrexone:

- sleep time and sleep latency unchanged
- increased time in stage 2
- decreased time in stage 3
- REM time decreased (~50%)
- REM latency increased
- WASO (wake time after 1st sleep onset) increased


ALL OF NEUROPHARMACOLOGY ON ONE SLIDE

Mind Body and Soul

MsAprilShowers.com

Heavenly Virtues Cardinal Sin Chastin Ale Temperance Stationy Charity Greed Diligence Sheth Patience Merath Kindness Envy Humility Pride

Cellular Level

- Involved in satiety
- Dopamine and reward behaviors
- Opiates and pleasure behaviors
- Dopamine and Endorphins have immunomudolator effects on T cells
- Effects on sleep
- Effects on mood, well-being

LDN is a successful approach

- Low incidence of side effects
- Physiologic approach, takes into account natural sleep wake cycle
- Restores the natural state of affairs, targets the mastergland

Opiate Delta Receptor

Delta receptor (DOP)

- named after vas deferens tissue
- located in the brain
- mediates
 - o analgesia
 - o antidepressant
 - o convulsant
 - physical dependence

Nociceptin Receptor: OLR-1

Nociceptin

- Endogenous antagonist of dopamine transport that may act either directly on dopamine or by inhibiting GABA to affect dopamine levels.
- Within the central nervous system its action can be either similar or opposite to those of opioids depending on their location.
- Controls a wide range of biological functions
 - Nociception
 - Food intake
 - Memory processes
 - Cardiovascular and renal functions
 - Locomotor activity to gastrointestinal motility
 - Anxiety to the control of
 - Neurotransmitter release at peripheral and central sites.^[5]

Kappa Receptor

- Locations:
 - o Brain
 - hypothalamus
 - periaqueductal gray
 - claustrum
 - spinal cord
 - substantia gelatinosa
 - peripheral sensory neurons

LDN in weight loss

59 yo woman with history of morbid obesity, lymphedema, HTN, hyperlipidemia, chronic cough due to pneumonitis

- diagnosed with inflammatory arthritis
- decided to seek weight loss counseling
- treated with behavioral modification, dietary plan, LDN

Case #1:

- 3 months into treatment sustained 35 lb weight loss
- Reported feeling adherent with dietary plan
- Reduction of inflammatory markers, decreased need for corticosteroids
- Improvement in depression

Case #2:

- 50 yo woman with history of HTN, hypothyroidism, GAD, depression presented frustrated that she was unable to lose weight in the weight loss clinic. She wanted surgery
- Treated with diet and LDN only
- Was initially unable to exercise due to bilateral knee pain due to OA
- Lost 20 lb in 1 month and started to exercise

Endogenous Opiates and Dopamine

Opiates

- Leukenkephalins
- Metenkephalins
- Dynorphins
- Endorphins
- Morphine

Dopamine

OTHER DRUGS FOR WEIGHT LOSS

FDA Approved

- Lorcaserin (Belviq)
- QSymia (Topamax/Phentermine)

Non-FDA Approved

- Buproprion Wellbutrin
- Naltrexone
- GLP-1 agonists

Low Toxicity Pharmaceuticals in Clinical Practice

- LDN research trust as a repository for observational findings
 - Individual case-reports
 - Clinical case series
 - Case-control studies
 - RCTs

SOURCES

Quock RM, Burkey TH, Varga E, Hosohata Y, Hosohata K, Cowell SM, Slate CA, Ehlert FJ, Roeske WR, Yamamura HI (1999). "The delta-opioid receptor: molecular pharmacology, signal transduction, and the determination of drug efficacy".

Hughes J, Smith T, Kosterlitz H, Fothergill L, Morgan B, Morris H (1975). "Identification of two related pentapeptides from the brain with potent opiate agonist activity". *Nature* **258** (5536): 577–80. doi:10.1038/258577a0.PMID 1207728.

Simantov R, Snyder S (1976). "Morphine-like peptides in a mammalian brain: isolation, structure elucidation, and interactions with an opiate receptor". *Proc Natl Acad Sci USA* **73** (7): 2515–9. doi:10.1073/pnas.73.7.2515. PMC 430630.PMID 1065904.

Smith, Steven R.; Neil J. Weissman, M.D., Christen M. Anderson, M.D., Ph.D., Matilde Sanchez, Ph.D., Emil Chuang, M.D., Scott Stubbe, M.B.A., Harold Bays, M.D., William R. Shanahan, M.D. (July 15, 2010). "Multicenter, Placebo-Controlled Trial of Lorcaserin for Weight Management". *N Engl J Med* (363): 245–256.doi:10.1056/NEJMoa0909809. PMID 20647200. Retrieved 4 April 2011.