Augmentation of spinal morphine analgesia and inhibition of tolerance by low doses of... (Abstract)

The LDN Conference 2021: 4th - 6th June 2021

Up to 29 CME Credits Available + Sponsor, Exhibitor and Advertiser Opportunities.  [More Details]

Augmentation of spinal morphine analgesia and inhibition of tolerance by low doses of mu- and delta-opioid receptor antagonists

Br J Pharmacol
July 2007

Background and purpose: Ultralow doses of naltrexone, a non-selective opioid antagonist, have previously been found to augment acute morphine analgesia and block the development of tolerance to this effect. Since morphine tolerance is dependent on the activity of micro and delta receptors, the present study investigated the effects of ultralow doses of antagonists selective for these receptor types on morphine analgesia and tolerance in tests of thermal and mechanical nociception.

Experimental approach: Effects of intrathecal administration of mu-receptor antagonists, CTOP (0.01 ng) or CTAP (0.001 ng), or a delta-receptor antagonist, naltrindole (0.01 ng), on spinal morphine analgesia and tolerance were evaluated using the tail-flick and paw-pressure tests in rats.

Key results: Both micro and delta antagonists augmented analgesia produced by a sub-maximal (5 microg) or maximal (15 microg) dose of morphine. Administration of the antagonists with morphine (15 microg) for 5 days inhibited the progressive decline of analgesia and prevented the loss of morphine potency. In animals exhibiting tolerance to morphine, administration of the antagonists with morphine produced a recovery of the analgesic response and restored morphine potency.

Conclusions and implications: Combining ultralow doses of micro- or delta-receptor antagonists with spinal morphine augmented the acute analgesic effects, inhibited the induction of chronic tolerance and reversed established tolerance. The remarkably similar effects of micro- and delta-opioid receptor antagonists on morphine analgesia and tolerance are interpreted in terms of blockade of the latent excitatory effects of the agonist that limit expression of its full activity.