Experimental autoimmune encephalopathy (EAE)-induced hippocampal neuroinflammation and memory deficits... (Abstract)

The LDN Conference 2021: 4th - 6th June 2021

Up to 29 CME Credits Available + Sponsor, Exhibitor and Advertiser Opportunities.  [More Details]

Experimental autoimmune encephalopathy (EAE)-induced hippocampal neuroinflammation and memory deficits are prevented with the non-opioid TLR2/TLR4 antagonist (+)-naltrexone

Behav Brain Res
01 Jan 2021
https://pubmed.ncbi.nlm.nih.gov/32905811/

Multiple sclerosis (MS) is associated with burdensome memory impairments and preclinical literature suggests that these impairments are linked to neuroinflammation. Previously, we have shown that toll-like receptor 4 (TLR4) antagonists, such as (+)-naltrexone [(+)-NTX], block neuropathic pain and associated spinal inflammation in rats. Here we extend these findings to first demonstrate that (+)-NTX blocks TLR2 in addition to TLR4. Additionally, we examined in two rat strains whether (+)-NTX could attenuate learning and memory disturbances and associated neuroinflammation using a low-dose experimental autoimmune encephalomyelitis (EAE) model of MS. EAE is the most commonly used experimental model for the human inflammatory demyelinating disease, MS. This low-dose model avoided motor impairments that would confound learning and memory measurements. Fourteen days later, daily subcutaneous (+)-NTX or saline injections began and continued throughout the study. Contextual and auditory-fear conditioning were conducted at day 21 to assess hippocampal and amygdalar function. With this low-dose model, EAE impaired long-term, but not short-term, contextual fear memory; both long-term and short-term auditory-cued fear memory were spared. This was associated with increased mRNA for hippocampal interleukin-1β (IL-1β), TLR2, TLR4, NLRP3, and IL-17 and elevated expression of the microglial marker Iba1 in CA1 and DG regions of the hippocampus, confirming the neuroinflammation observed in higher-dose EAE models. Importantly, (+)-NTX completely prevented the EAE-induced memory impairments and robustly attenuated the associated proinflammatory effects. These findings suggest that (+)-NTX may exert therapeutic effects on memory function by dampening the neuroinflammatory response in the hippocampus through blockade of TLR2/TLR4. This study suggests that TLR2 and TLR4 antagonists may be effective at treating MS-related memory deficits.

Keywords: Auditory fear conditioning; Contextual fear conditioning; Experimental autoimmune encephalomyelitis; Hippocampus; Multiple sclerosis; Rats; Toll-like receptors.